: 8% v i\.‘
ELSEVIER |

Practical Machine Learning Tools and Techniques

TV AN rs ’ "_].. 4 10

SECOND EDITION =

’ g '//J//l




Jata Mining

Practical Machine Learning Tools and Techniques



The Morgan Kaufmann Series in Data Management Systems

Series Editor: Jim Gray, Microsoft Research

Data Mining: Practical Machine Learning
Tools and Techniques, Second Edition
Tan H. Witten and Eibe Frank

Fuzzy Modeling and Genetic Algorithms for
Data Mining and Exploration
Earl Cox

Data Modeling Essentials, Third Edition
Graeme C. Simsion and Graham C. Witt

Location-Based Services
Jochen Schiller and Agnes Voisard

Database Modeling with Microsoft® Visio for
Enterprise Architects

Terry Halpin, Ken Evans, Patrick Hallock,
and Bill Maclean

Designing Data-Intensive Web Applications
Stefano Ceri, Piero Fraternali, Aldo Bongio,
Marco Brambilla, Sara Comai, and
Maristella Matera

Mining the Web: Discovering Knowledge
from Hypertext Data
Soumen Chakrabarti

Advanced SQL: 1999—Understanding
Object-Relational and Other Advanced
Features

Jim Melton

Database Tuning: Principles, Experiments,
and Troubleshooting Techniques
Dennis Shasha and Philippe Bonnet

SQL: 1999—Understanding Relational
Language Components
Jim Melton and Alan R. Simon

Information Visualization in Data Mining
and Knowledge Discovery

Edited by Usama Fayyad, Georges G.
Grinstein, and Andreas Wierse

Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency
Control and Recovery

Gerhard Weikum and Gottfried Vossen

Spatial Databases: With Application to GIS
Philippe Rigaux, Michel Scholl, and Agnes
Voisard

Information Modeling and Relational
Databases: From Conceptual Analysis to
Logical Design

Terry Halpin

Component Database Systems
Edited by Klaus R. Dittrich and Andreas
Geppert

Managing Reference Data in Enterprise
Databases: Binding Corporate Data to the
Wider World

Malcolm Chisholm

Data Mining: Concepts and Techniques
Jiawei Han and Micheline Kamber

Understanding SQL and Java Together: A
Guide to SQLJ, IDBC, and Related
Technologies

Jim Melton and Andrew Eisenberg

Database: Principles, Programming, and
Performance, Second Edition
Patrick O’Neil and Elizabeth O’Neil

The Object Data Standard: ODMG 3.0
Edited by R. G. G. Cattell, Douglas K.
Barry, Mark Berler, Jeff Eastman, David
Jordan, Craig Russell, Olaf Schadow,
Torsten Stanienda, and Fernando Velez

Data on the Web: From Relations to
Semistructured Data and XML

Serge Abiteboul, Peter Buneman, and Dan
Suciu

Data Mining: Practical Machine Learning
Tools and Techniques with Java
Implementations

Tan H. Witten and Eibe Frank

Joe Celko’s SQL for Smarties: Advanced SQL
Programming, Second Edition
Joe Celko

Joe Celko’s Data and Databases: Concepts in
Practice
Joe Celko

Developing Time-Oriented Database
Applications in SQL
Richard T. Snodgrass

Web Farming for the Data Warehouse
Richard D. Hackathorn

Database Modeling & Design, Third Edition
Toby J. Teorey

Management of Heterogeneous and
Autonomous Database Systems

Edited by Ahmed Elmagarmid, Marek
Rusinkiewicz, and Amit Sheth

Object-Relational DBMSs: Tracking the Next
Great Wave, Second Edition

Michael Stonebraker and Paul Brown, with
Dorothy Moore

A Complete Guide to DB2 Universal
Database
Don Chamberlin

Universal Database Management: A Guide
to Object/Relational Technology
Cynthia Maro Saracco

Readings in Database Systems, Third Edition
Edited by Michael Stonebraker and Joseph
M. Hellerstein

Understanding SQL’s Stored Procedures: A
Complete Guide to SQL/PSM
Jim Melton

Principles of Multimedia Database Systems
V. S. Subrahmanian

Principles of Database Query Processing for
Advanced Applications
Clement T. Yu and Weiyi Meng

Advanced Database Systems

Carlo Zaniolo, Stefano Ceri, Christos
Faloutsos, Richard T. Snodgrass, V. S.
Subrahmanian, and Roberto Zicari

Principles of Transaction Processing for the
Systems Professional
Philip A. Bernstein and Eric Newcomer

Using the New DB2: IBM’s Object-Relational
Database System
Don Chamberlin

Distributed Algorithms
Nancy A. Lynch

Active Database Systems: Triggers and Rules
For Advanced Database Processing
Edited by Jennifer Widom and Stefano Ceri

Migrating Legacy Systems: Gateways,
Interfaces & the Incremental Approach
Michael L. Brodie and Michael Stonebraker

Atomic Transactions
Nancy Lynch, Michael Merritt, William
Weihl, and Alan Fekete

Query Processing For Advanced Database
Systems

Edited by Johann Christoph Freytag, David
Maier, and Gottfried Vossen

Transaction Processing: Concepts and
Techniques
Jim Gray and Andreas Reuter

Building an Object-Oriented Database
System: The Story of O,

Edited by Frangois Bancilhon, Claude
Delobel, and Paris Kanellakis

Database Transaction Models For Advanced
Applications
Edited by Ahmed K. Elmagarmid

A Guide to Developing Client/Server SQL
Applications

Setrag Khoshafian, Arvola Chan, Anna
Wong, and Harry K. T. Wong

The Benchmark Handbook For Database
and Transaction Processing Systems, Second
Edition

Edited by Jim Gray

Camelot and Avalon: A Distributed
Transaction Facility

Edited by Jeffrey L. Eppinger, Lily B.
Mummert, and Alfred Z. Spector

Readings in Object-Oriented Database
Systems

Edited by Stanley B. Zdonik and David
Maier



 [ata Mining

Practical Machine Learning Tools and Techniques,
Second Edition

lan H. Witten

Department of Computer Science
University of Waikato

Eibe Frank

Department of Computer Science
University of Waikato

AMSTERDAM + BOSTON ¢ HEIDELBERG « LONDON
NEW YORK + OXFORD -« PARIS « SAN DIEGO
M (¢
SAN FRANCISCO ¢ SINGAPORE -+ SYDNEY ¢ TOKYO '
ELSEVIER MORGAN KAUFMANN PUBLISHERS IS AN IMPRINT OF ELSEVIER MORGAN KAUFMANN PUBLISHERS




Publisher:

Publishing Services Manager:
Project Manager:

Editorial Assistant:

Cover Design:

Cover Image:

Diane Cerra

Simon Crump
Brandy Lilly

Asma Stephan

Yvo Riezebos Design
Getty Images

Composition: ~ SNP Best-set Typesetter Ltd., Hong Kong
Technical Illustration: ~ Dartmouth Publishing, Inc.
Copyeditor: ~ Graphic World Inc.
Proofreader: ~ Graphic World Inc.
Indexer:  Graphic World Inc.

Interior printer:
Cover printer:

The Maple-Vail Book Manufacturing Group
Phoenix Color Corp

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.
© 2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks
or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a
claim, the product names appear in initial capital or all capital letters. Readers, however, should
contact the appropriate companies for more complete information regarding trademarks and
registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—
without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com.uk. You may also complete your request on-line via the Elsevier
homepage (http://elsevier.com) by selecting “Customer Support” and then “Obtaining
Permissions.”

Library of Congress Cataloging-in-Publication Data

Witten, I. H. (Ian H.)
Data mining : practical machine learning tools and techniques / Tan H. Witten, Eibe
Frank. — 2nd ed.
p. cm. — (Morgan Kaufmann series in data management systems)
Includes bibliographical references and index.
ISBN: 0-12-088407-0
1. Data mining. I. Frank, Eibe. II. Title. III. Series.
QA76.9.D343W58 2005
006.3—dc22 2005043385
For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
05 06 07 08 09 54321

Working together to grow
libraries in developing countries
www.elsevier.com | www.bookaid.org | www.sabre.org

BOOK AID

International

ELSEVIER

Sabre Foundation



oreword

Jim Gray, Series Editor
Microsoft Research

Technology now allows us to capture and store vast quantities of data. Finding
patterns, trends, and anomalies in these datasets, and summarizing them
with simple quantitative models, is one of the grand challenges of the infor-
mation age—turning data into information and turning information into
knowledge.

There has been stunning progress in data mining and machine learning. The
synthesis of statistics, machine learning, information theory, and computing has
created a solid science, with a firm mathematical base, and with very powerful
tools. Witten and Frank present much of this progress in this book and in the
companion implementation of the key algorithms. As such, this is a milestone
in the synthesis of data mining, data analysis, information theory, and machine
learning. If you have not been following this field for the last decade, this is a
great way to catch up on this exciting progress. If you have, then Witten and
Frank’s presentation and the companion open-source workbench, called Weka,
will be a useful addition to your toolkit.

They present the basic theory of automatically extracting models from data,
and then validating those models. The book does an excellent job of explaining
the various models (decision trees, association rules, linear models, clustering,
Bayes nets, neural nets) and how to apply them in practice. With this basis, they
then walk through the steps and pitfalls of various approaches. They describe
how to safely scrub datasets, how to build models, and how to evaluate a model’s
predictive quality. Most of the book is tutorial, but Part II broadly describes how
commercial systems work and gives a tour of the publicly available data mining
workbench that the authors provide through a website. This Weka workbench
has a graphical user interface that leads you through data mining tasks and has
excellent data visualization tools that help understand the models. It is a great
companion to the text and a useful and popular tool in its own right.



Vi

FOREWORD

This book presents this new discipline in a very accessible form: as a text
both to train the next generation of practitioners and researchers and to inform
lifelong learners like myself. Witten and Frank have a passion for simple and
elegant solutions. They approach each topic with this mindset, grounding all
concepts in concrete examples, and urging the reader to consider the simple
techniques first, and then progress to the more sophisticated ones if the simple
ones prove inadequate.

If you are interested in databases, and have not been following the machine
learning field, this book is a great way to catch up on this exciting progress. If
you have data that you want to analyze and understand, this book and the asso-
ciated Weka toolkit are an excellent way to start.



Part |

1.1

1.2

1.3

bontents

Foreword v

Preface xxiii
Updated and revised content — xxvii
Acknowledgments — xxix

Machine learning tools and techniques 1

What's it all about? 3

Data mining and machine learning 4

Describing structural patterns 6

Machine learning 7

Data mining 9

Simple examples: The weather problem and others 9
The weather problem 10

Contact lenses: An idealized problem 13

Irises: A classic numeric dataset 15

CPU performance: Introducing numeric prediction 16
Labor negotiations: A more realistic example 17
Soybean classification: A classic machine learning success 18

Fielded applications 22
Decisions involving judgment — 22
Screening images 23

Load forecasting 24

Diagnosis 25

Marketing and sales 26

Other applications 28

Vii



Viii

1.4
1.5

1.6
1.7

2.1
2.2
2.3
2.4

2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

CONTENTS

Machine learning and statistics 29

Generalization as search 30
Enumerating the concept space 31
Bias 32

Data mining and ethics 35
Further reading 37

Input: Concepts, instances, and attributes

What’s a concept? 42
What’s in an example? 45
What’s in an attribute? 49
Preparing the input 52
Gathering the data together ~ 52
ARFF format 53

Sparse data 55

Attribute types 56

Missing values 58

Inaccurate values 59

Getting to know your data 60

Further reading 60

Output: Knowledge representation 61

Decision tables 62

Decision trees 62

Classification rules 65
Association rules 69

Rules with exceptions 70

Rules involving relations 73
Trees for numeric prediction 76
Instance-based representation 76
Clusters 81

Further reading 82

!



4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

CONTENTS

Algorithms: The basic methods 83

Inferring rudimentary rules 84
Missing values and numeric attributes 86
Discussion 88

Statistical modeling 88

Missing values and numeric attributes 92
Bayesian models for document classification 94
Discussion 96

Divide-and-conquer: Constructing decision trees 97
Calculating information 100

Highly branching attributes 102

Discussion 105

Covering algorithms: Constructing rules 105
Rules versus trees 107

A simple covering algorithm 107

Rules versus decision lists 111

Mining association rules 112
Item sets 113

Association rules 113
Generating rules efficiently 117
Discussion 118

Linear models 119

Numeric prediction: Linear regression 119
Linear classification: Logistic regression 121
Linear classification using the perceptron 124
Linear classification using Winnow 126

Instance-based learning 128

The distance function 128

Finding nearest neighbors efficiently 129
Discussion 135

Clustering 136

Iterative distance-based clustering 137
Faster distance calculations 138
Discussion 139

Further reading 139

X



5.1
5.2
5.3
54

5.5
5.6

5.7

5.8
5.9
5.10
5.11

6.1

6.2

CONTENTS

Credibility: Evaluating what's been learned 143

Training and testing 144
Predicting performance 146
Cross-validation 149

Other estimates 151
Leave-one-out 151
The bootstrap 152

Comparing data mining methods 153

Predicting probabilities 157
Quadpratic loss function 158
Informational loss function 159
Discussion 160

Counting the cost 161
Cost-sensitive classification 164
Cost-sensitive learning 165
Lift charts 166

ROC curves 168
Recall-precision curves 171
Discussion 172

Cost curves 173

Evaluating numeric prediction 176

The minimum description length principle 179
Applying the MDL principle to clustering 183
Further reading 184

Implementations: Real machine learning schemes

Decision trees 189

Numeric attributes 189

Missing values 191

Pruning 192

Estimating error rates 193

Complexity of decision tree induction 196
From trees to rules 198

C4.5: Choices and options 198

Discussion 199

Classification rules 200
Criteria for choosing tests 200
Missing values, numeric attributes 201

187



6.3

6.4

6.5

6.6

6.7

CONTENTS

Generating good rules 202

Using global optimization — 205

Obtaining rules from partial decision trees 207
Rules with exceptions 210

Discussion 213

Extending linear models 214

The maximum margin hyperplane 215
Nonlinear class boundaries 217
Support vector regression 219

The kernel perceptron 222

Multilayer perceptrons 223
Discussion 235

Instance-based learning 235

Reducing the number of exemplars 236

Pruning noisy exemplars 236

Weighting attributes 237

Generalizing exemplars 238

Distance functions for generalized exemplars 239
Generalized distance functions 241

Discussion 242

Numeric prediction 243

Model trees 244

Building the tree 245

Pruning the tree 245

Nominal attributes 246

Missing values 246

Pseudocode for model tree induction 247
Rules from model trees 250

Locally weighted linear regression 251
Discussion 253

Clustering 254

Choosing the number of clusters 254
Incremental clustering 255
Category utility 260
Probability-based clustering 262
The EM algorithm 265

Extending the mixture model — 266
Bayesian clustering 268

Discussion 270

Bayesian networks 271
Making predictions 272
Learning Bayesian networks 276

Xi



Xii

7.1

7.2

7.3

7.4

7.5

7.6

7.7

CONTENTS

Specific algorithms 278
Data structures for fast learning 280
Discussion 283

Transformations: Engineering the input and output

Attribute selection 288
Scheme-independent selection 290
Searching the attribute space 292
Scheme-specific selection 294

Discretizing numeric attributes 296
Unsupervised discretization 297

Entropy-based discretization 298

Other discretization methods 302

Entropy-based versus error-based discretization 302
Converting discrete to numeric attributes 304

Some useful transformations 305
Principal components analysis 306
Random projections 309

Text to attribute vectors 309

Time series 311

Automatic data cleansing 312
Improving decision trees 312
Robust regression 313
Detecting anomalies 314

Combining multiple models 315
Bagging 316

Bagging with costs 319
Randomization 320

Boosting 321

Additive regression 325

Additive logistic regression 327
Option trees 328

Logistic model trees 331

Stacking 332

Error-correcting output codes 334
Using unlabeled data 337
Clustering for classification ~ 337
Co-training 339

EM and co-training 340
Further reading 341

285



8.1
8.2
8.3
8.4
8.5
8.6

Part i

9.1
9.2
9.3
9.4

10

10.1

10.2

10.3

CONTENTS

Moving on: Extensions and applications 345

Learning from massive datasets 346
Incorporating domain knowledge 349
Text and Web mining 351

Adversarial situations 356
Ubiquitous data mining 358

Further reading 361

The Weka machine learning workbench 363

Introduction to Weka 365

What’s in Weka? 366

How do you use it? 367
What else can you do? 368
How do you get it? 368

The Explorer 369

Getting started 369

Preparing the data 370

Loading the data into the Explorer ~ 370
Building a decision tree 373
Examining the output 373

Doing it again 377

Working with models 377

When things go wrong 378

Exploring the Explorer 380

Loading and filtering files 380

Training and testing learning schemes 384
Do it yourself: The User Classifier ~ 388
Using a metalearner 389

Clustering and association rules 391
Attribute selection 392

Visualization ~ 393

Filtering algorithms 393
Unsupervised attribute filters 395
Unsupervised instance filters 400
Supervised filters 401

Xili



Xiv

10.4

10.5

10.6
10.7
10.8

1

11.1
11.2
11.3
11.4

12

12.1

12.2
12.3
12.4
12.5

CONTENTS

Learning algorithms 403
Bayesian classifiers 403

Trees 406

Rules 408

Functions 409

Lazy classifiers 413
Miscellaneous classifiers 414
Metalearning algorithms 414
Bagging and randomization — 414
Boosting 416

Combining classifiers 417
Cost-sensitive learning 417
Optimizing performance 417
Retargeting classifiers for different tasks 418
Clustering algorithms 418
Association-rule learners 419

Attribute selection 420
Attribute subset evaluators 422
Single-attribute evaluators 422
Search methods 423

The Knowledge Flow interface 427

Getting started 427
The Knowledge Flow components 430
Configuring and connecting the components

Incremental learning 433

The Experimenter 437

Getting started 438
Running an experiment 439
Analyzing the results 440

Simple setup 441
Advanced setup 442
The Analyze panel 443

Distributing processing over several machines

431

445



13

13.1
13.2

13.3

14

14.1
14.2

15

15.1

15.2

CONTENTS

The command-line interface 449

Getting started 449

The structure of Weka 450
Classes, instances, and packages 450
The weka.core package 451

The weka.classifiers package 453
Other packages 455

Javadoc indices 456

Command-line options 456

Generic options 456
Scheme-specific options 458

Embedded machine learning 461

A simple data mining application 461

Going through the code 462
main() 462
MessageClassifier() 462
updateData() 468
classifyMessage() 468

Writing new learning schemes 471

An example classifier 471
buildClassifier() 472
makeTree() 472
computelnfoGain() 480
classifylnstance() 480
main() 481

Conventions for implementing classifiers 483
References 485
Index 505

About the authors 525

XV






Figure 1.1
Figure 1.2
Figure 1.3
Figure 2.1

Figure 2.2
Figure 3.1

Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7

Figure 3.8
Figure 3.9
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6

Figure 4.7

Figure 4.8
Figure 4.9

List of Figures

Rules for the contact lens data. 13
Decision tree for the contact lens data. 14
Decision trees for the labor negotiations data. 19

A family tree and two ways of expressing the sister-of
relation. 46

AREFF file for the weather data. 54

Constructing a decision tree interactively: (a) creating a
rectangular test involving petallength and petalwidth and (b)

the resulting (unfinished) decision tree. 64
Decision tree for a simple disjunction. 66
The exclusive-or problem. 67
Decision tree with a replicated subtree. 68

Rules for the Iris data. 72

The shapes problem. 73

Models for the CPU performance data: (a) linear regression,
(b) regression tree, and (c) model tree. 77

Different ways of partitioning the instance space. 79

Different ways of representing clusters. 81

Pseudocode for 1R. 85

Tree stumps for the weather data. 98

Expanded tree stumps for the weather data. 100

Decision tree for the weather data. 101

Tree stump for the ID code attribute. 103

Covering algorithm: (a) covering the instances and (b) the
decision tree for the same problem. 106

The instance space during operation of a covering
algorithm. 108

Pseudocode for a basic rule learner. 111

Logistic regression: (a) the logit transform and (b) an example
logistic regression function. 122

XVii



XViii

LIST OF FIGURES

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

Figure 6.1

Figure 6.2
Figure 6.3

Figure 6.4
Figure 6.5

Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9

Figure 6.10
Figure 6.11

Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17

The perceptron: (a) learning rule and (b) representation as
a neural network. 125

The Winnow algorithm: (a) the unbalanced version and (b)
the balanced version. 127

A kD-tree for four training instances: (a) the tree and (b)
instances and splits. 130

Using a kD-tree to find the nearest neighbor of the
star. 131

Ball tree for 16 training instances: (a) instances and balls and
(b) the tree. 134

Ruling out an entire ball (gray) based on a target point (star)
and its current nearest neighbor. 135

A ball tree: (a) two cluster centers and their dividing line and
(b) the corresponding tree. 140

A hypothetical lift chart. 168

A sample ROC curve. 169

ROC curves for two learning methods. 170

Effects of varying the probability threshold: (a) the error curve
and (b) the cost curve. 174

Example of subtree raising, where node C is “raised” to
subsume node B. 194

Pruning the labor negotiations decision tree. ~ 196

Algorithm for forming rules by incremental reduced-error
pruning. 205

RIPPER: (a) algorithm for rule learning and (b) meaning of
symbols. 206

Algorithm for expanding examples into a partial
tree. 208

Example of building a partial tree. ~ 209

Rules with exceptions for the iris data. 211

A maximum margin hyperplane. 216

Support vector regression: (a) €= 1, (b) €= 2, and (c)
£=0.5. 221

Example datasets and corresponding perceptrons. 225

Step versus sigmoid: (a) step function and (b) sigmoid
function. 228

Gradient descent using the error function x* + 1. 229
Multilayer perceptron with a hidden layer. 231

A boundary between two rectangular classes. 240
Pseudocode for model tree induction. 248

Model tree for a dataset with nominal attributes. 250

Clustering the weather data. 256



Figure 6.18
Figure 6.19
Figure 6.20
Figure 6.21
Figure 6.22

Figure 7.1
Figure 7.2

Figure 7.3
Figure 7.4

Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4

Figure 10.5
Figure 10.6

Figure 10.7

Figure 10.8
Figure 10.9
Figure 10.10
Figure 10.11

Figure 10.12

LIST OF FIGURES XiX

Hierarchical clusterings of the iris data. 259

A two-class mixture model. 264

A simple Bayesian network for the weather data. 273

Another Bayesian network for the weather data. 274

The weather data: (a) reduced version and (b) corresponding
AD tree. 281

Attribute space for the weather dataset. 293

Discretizing the temperature attribute using the entropy
method. 299

The result of discretizing the temperature attribute.

Class distribution for a two-class, two-attribute
problem. 303

Principal components transform of a dataset: (a) variance of
each component and (b) variance plot. 308

Number of international phone calls from Belgium,
1950-1973. 314

Algorithm for bagging. 319

Algorithm for boosting. 322

Algorithm for additive logistic regression. 327

Simple option tree for the weather data. 329

Alternating decision tree for the weather data.

The Explorer interface. 370

Weather data: (a) spreadsheet, (b) CSV format, and
(c) ARFE 371

The Weka Explorer: (a) choosing the Explorer interface and
(b) reading in the weather data. 372

Using J4.8: (a) finding it in the classifiers list and (b) the
Classify tab. 374

Output from the J4.8 decision tree learner. 375

Visualizing the result of J4.8 on the iris dataset: (a) the tree
and (b) the classifier errors. 379

Generic object editor: (a) the editor, (b) more information
(click More), and (c) choosing a converter
(click Choose). 381

Choosing a filter: (a) the filters menu, (b) an object editor, and

300

330

(c) more information (click More). 383
The weather data with two attributes removed. 384
Processing the CPU performance data with M5". 385

Output from the M5” program for numeric
prediction. 386

Visualizing the errors: (a) from M5” and (b) from linear
regression. 388



XX

LIST OF FIGURES

Figure 10.13
Figure 10.14
Figure 10.15
Figure 10.16
Figure 10.17

Figure 10.18

Figure 10.19
Figure 10.20

Figure 10.21
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4
Figure 13.1
Figure 13.2

Figure 14.1
Figure 15.1

Working on the segmentation data with the User Classifier:
(a) the data visualizer and (b) the tree visualizer. 390

Configuring a metalearner for boosting decision
stumps. 391

Output from the Apriori program for association rules. 392

Visualizing the Iris dataset. =~ 394

Using Weka’s metalearner for discretization: (a) configuring
FilteredClassifier, and (b) the menu of filters. 402

Visualizing a Bayesian network for the weather data (nominal
version): (a) default output, (b) a version with the
maximum number of parents set to 3 in the search
algorithm, and (c) probability distribution table for the
windy node in (b). 406

Changing the parameters for J4.8. 407

Using Weka’s neural-network graphical user
interface. 411

Attribute selection: specifying an evaluator and a search
method. 420

The Knowledge Flow interface. ~ 428

Configuring a data source: (a) the right-click menu and
(b) the file browser obtained from the Configure menu
item. 429

Operations on the Knowledge Flow components. 432

A Knowledge Flow that operates incrementally: (a) the
configuration and (b) the strip chart output. 434

An experiment: (a) setting it up, (b) the results file, and
(c) a spreadsheet with the results. 438

Statistical test results for the experiment in
Figure 12.1. 440

Setting up an experiment in advanced mode. 442

Rows and columns of Figure 12.2: (a) row field, (b) column
field, (c) result of swapping the row and column selections,
and (d) substituting Run for Dataset as rows. 444

Using Javadoc: (a) the front page and (b) the weka.core
package. 452

DecisionStump: A class of the weka.classifiers.trees
package. 454

Source code for the message classifier. 463

Source code for the ID3 decision tree learner. 473



Table 1.1
Table 1.2
Table 1.3
Table 1.4
Table 1.5
Table 1.6
Table 1.7
Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 3.1
Table 3.2
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9

Table 4.10

Table 4.11
Table 5.1

List of Tables

The contact lens data. 6

The weather data. 11

Weather data with some numeric attributes. 12
The iris data. 15

The CPU performance data. 16

The labor negotiations data. 18

The soybean data. 21

Iris data as a clustering problem. 44

Weather data with a numeric class. 44

Family tree represented as a table. 47

The sister-of relation represented in a table. 47
Another relation represented as a table. 49

A new iris flower. 70

Training data for the shapes problem. 74
Evaluating the attributes in the weather data. ~ 85
The weather data with counts and probabilities. 89
A new day. 89

The numeric weather data with summary statistics. 93
Another new day. 94

The weather data with identification codes. 103

Gain ratio calculations for the tree stumps of Figure 4.2. 104

Part of the contact lens data for which astigmatism = yes. 109

Part of the contact lens data for which astigmatism = yes and
tear production rate = normal. 110

Item sets for the weather data with coverage 2 or
greater. 114

Association rules for the weather data. 116

Confidence limits for the normal distribution. 148

XXi



XXii

LIST OF TABLES

Table 5.2

Table 5.3
Table 5.4

Table 5.5

Table 5.6
Table 5.7

Table 5.8
Table 5.9

Table 6.1
Table 7.1

Table 10.1
Table 10.2
Table 10.3
Table 10.4
Table 10.5
Table 10.6
Table 10.7
Table 10.8
Table 10.9
Table 10.10
Table 11.1
Table 13.1
Table 13.2

Table 15.1

Confidence limits for Student’s distribution with 9 degrees
of freedom. 155

Different outcomes of a two-class prediction. 162

Different outcomes of a three-class prediction: (a) actual and
(b) expected. 163

Default cost matrixes: (a) a two-class case and (b) a three-class
case. 164

Data for a lift chart. 167

Different measures used to evaluate the false positive versus the
false negative tradeoff. 172

Performance measures for numeric prediction. 178

Performance measures for four numeric prediction
models. 179

Linear models in the model tree. 250

Transforming a multiclass problem into a two-class one:
(a) standard method and (b) error-correcting code. 335

Unsupervised attribute filters. 396

Unsupervised instance filters. 400

Supervised attribute filters. 402

Supervised instance filters. 402

Classifier algorithms in Weka. 404

Metalearning algorithms in Weka. 415

Clustering algorithms. 419

Association-rule learners. 419

Attribute evaluation methods for attribute selection. 421

Search methods for attribute selection. 421

Visualization and evaluation components. 430

Generic options for learning schemes in Weka. 457

Scheme-specific options for the J4.8 decision tree
learner. 458

Simple learning schemes in Weka. 472



Preface

The convergence of computing and communication has produced a society that
feeds on information. Yet most of the information is in its raw form: data. If
data is characterized as recorded facts, then information is the set of patterns,
or expectations, that underlie the data. There is a huge amount of information
locked up in databases—information that is potentially important but has not
yet been discovered or articulated. Our mission is to bring it forth.

Data mining is the extraction of implicit, previously unknown, and poten-
tially useful information from data. The idea is to build computer programs that
sift through databases automatically, seeking regularities or patterns. Strong pat-
terns, if found, will likely generalize to make accurate predictions on future data.
Of course, there will be problems. Many patterns will be banal and uninterest-
ing. Others will be spurious, contingent on accidental coincidences in the par-
ticular dataset used. In addition real data is imperfect: Some parts will be
garbled, and some will be missing. Anything discovered will be inexact: There
will be exceptions to every rule and cases not covered by any rule. Algorithms
need to be robust enough to cope with imperfect data and to extract regulari-
ties that are inexact but useful.

Machine learning provides the technical basis of data mining. It is used to
extract information from the raw data in databases—information that is
expressed in a comprehensible form and can be used for a variety of purposes.
The process is one of abstraction: taking the data, warts and all, and inferring
whatever structure underlies it. This book is about the tools and techniques of
machine learning used in practical data mining for finding, and describing,
structural patterns in data.

As with any burgeoning new technology that enjoys intense commercial
attention, the use of data mining is surrounded by a great deal of hype in the
technical—and sometimes the popular—press. Exaggerated reports appear of
the secrets that can be uncovered by setting learning algorithms loose on oceans
of data. But there is no magic in machine learning, no hidden power, no

XXiii



XXiv

PREFACE

alchemy. Instead, there is an identifiable body of simple and practical techniques
that can often extract useful information from raw data. This book describes
these techniques and shows how they work.

We interpret machine learning as the acquisition of structural descriptions
from examples. The kind of descriptions found can be used for prediction,
explanation, and understanding. Some data mining applications focus on pre-
diction: forecasting what will happen in new situations from data that describe
what happened in the past, often by guessing the classification of new examples.
But we are equally—perhaps more—interested in applications in which the
result of “learning” is an actual description of a structure that can be used to
classify examples. This structural description supports explanation, under-
standing, and prediction. In our experience, insights gained by the applications’
users are of most interest in the majority of practical data mining applications;
indeed, this is one of machine learning’s major advantages over classical statis-
tical modeling.

The book explains a variety of machine learning methods. Some are peda-
gogically motivated: simple schemes designed to explain clearly how the basic
ideas work. Others are practical: real systems used in applications today. Many
are contemporary and have been developed only in the last few years.

A comprehensive software resource, written in the Java language, has been
created to illustrate the ideas in the book. Called the Waikato Environment for
Knowledge Analysis, or Weka' for short, it is available as source code on the
World Wide Web at http://www.cs.waikato.ac.nz/ml/weka. It is a full, industrial-
strength implementation of essentially all the techniques covered in this book.
It includes illustrative code and working implementations of machine learning
methods. Tt offers clean, spare implementations of the simplest techniques,
designed to aid understanding of the mechanisms involved. It also provides a
workbench that includes full, working, state-of-the-art implementations of
many popular learning schemes that can be used for practical data mining or
for research. Finally, it contains a framework, in the form of a Java class library,
that supports applications that use embedded machine learning and even the
implementation of new learning schemes.

The objective of this book is to introduce the tools and techniques for
machine learning that are used in data mining. After reading it, you will under-
stand what these techniques are and appreciate their strengths and applicabil-
ity. If you wish to experiment with your own data, you will be able to do this
easily with the Weka software.

'Found only on the islands of New Zealand, the weka (pronounced to rhyme with Mecca)
is a flightless bird with an inquisitive nature.



PREFACE XXV

The book spans the gulf between the intensely practical approach taken by
trade books that provide case studies on data mining and the more theoretical,
principle-driven exposition found in current textbooks on machine learning.
(A brief description of these books appears in the Further reading section at the
end of Chapter 1.) This gulf is rather wide. To apply machine learning tech-
niques productively, you need to understand something about how they work;
this is not a technology that you can apply blindly and expect to get good results.
Different problems yield to different techniques, but it is rarely obvious which
techniques are suitable for a given situation: you need to know something about
the range of possible solutions. We cover an extremely wide range of techniques.
We can do this because, unlike many trade books, this volume does not promote
any particular commercial software or approach. We include a large number of
examples, but they use illustrative datasets that are small enough to allow you
to follow what is going on. Real datasets are far too large to show this (and in
any case are usually company confidential). Our datasets are chosen not to
illustrate actual large-scale practical problems but to help you understand what
the different techniques do, how they work, and what their range of application
is.

The book is aimed at the technically aware general reader interested in the
principles and ideas underlying the current practice of data mining. It will
also be of interest to information professionals who need to become acquainted
with this new technology and to all those who wish to gain a detailed technical
understanding of what machine learning involves. It is written for an eclectic
audience of information systems practitioners, programmers, consultants,
developers, information technology managers, specification writers, patent
examiners, and curious laypeople—as well as students and professors—who
need an easy-to-read book with lots of illustrations that describes what the
major machine learning techniques are, what they do, how they are used, and
how they work. It is practically oriented, with a strong “how to” flavor, and
includes algorithms, code, and implementations. All those involved in practical
data mining will benefit directly from the techniques described. The book is
aimed at people who want to cut through to the reality that underlies the hype
about machine learning and who seek a practical, nonacademic, unpretentious
approach. We have avoided requiring any specific theoretical or mathematical
knowledge except in some sections marked by a light gray bar in the margin.
These contain optional material, often for the more technical or theoretically
inclined reader, and may be skipped without loss of continuity.

The book is organized in layers that make the ideas accessible to readers who
are interested in grasping the basics and to those who would like more depth of
treatment, along with full details on the techniques covered. We believe that con-
sumers of machine learning need to have some idea of how the algorithms they
use work. It is often observed that data models are only as good as the person



XXVi

PREFACE

who interprets them, and that person needs to know something about how the
models are produced to appreciate the strengths, and limitations, of the tech-
nology. However, it is not necessary for all data model users to have a deep
understanding of the finer details of the algorithms.

We address this situation by describing machine learning methods at succes-
sive levels of detail. You will learn the basic ideas, the topmost level, by reading
the first three chapters. Chapter 1 describes, through examples, what machine
learning is and where it can be used; it also provides actual practical applica-
tions. Chapters 2 and 3 cover the kinds of input and output—or knowledge
representation—involved. Different kinds of output dictate different styles
of algorithm, and at the next level Chapter 4 describes the basic methods of
machine learning, simplified to make them easy to comprehend. Here the prin-
ciples involved are conveyed in a variety of algorithms without getting into
intricate details or tricky implementation issues. To make progress in the appli-
cation of machine learning techniques to particular data mining problems, it is
essential to be able to measure how well you are doing. Chapter 5, which can be
read out of sequence, equips you to evaluate the results obtained from machine
learning, addressing the sometimes complex issues involved in performance
evaluation.

At the lowest and most detailed level, Chapter 6 exposes in naked detail the
nitty-gritty issues of implementing a spectrum of machine learning algorithms,
including the complexities necessary for them to work well in practice. Although
many readers may want to ignore this detailed information, it is at this level that
the full, working, tested implementations of machine learning schemes in Weka
are written. Chapter 7 describes practical topics involved with engineering the
input to machine learning—for example, selecting and discretizing attributes—
and covers several more advanced techniques for refining and combining the
output from different learning techniques. The final chapter of Part I looks to
the future.

The book describes most methods used in practical machine learning.
However, it does not cover reinforcement learning, because it is rarely applied
in practical data mining; genetic algorithm approaches, because these are just
an optimization technique; or relational learning and inductive logic program-
ming, because they are rarely used in mainstream data mining applications.

The data mining system that illustrates the ideas in the book is described in
Part II to clearly separate conceptual material from the practical aspects of how
to use it. You can skip to Part II directly from Chapter 4 if you are in a hurry to
analyze your data and don’t want to be bothered with the technical details.

Java has been chosen for the implementations of machine learning tech-
niques that accompany this book because, as an object-oriented programming
language, it allows a uniform interface to learning schemes and methods for pre-
and postprocessing. We have chosen Java instead of C++, Smalltalk, or other



PREFACE XXV

object-oriented languages because programs written in Java can be run on
almost any computer without having to be recompiled, having to undergo com-
plicated installation procedures, or—worst of all—having to change the code.
A Java program is compiled into byte-code that can be executed on any com-
puter equipped with an appropriate interpreter. This interpreter is called the
Java virtual machine. Java virtual machines—and, for that matter, Java compil-
ers—are freely available for all important platforms.

Like all widely used programming languages, Java has received its share of
criticism. Although this is not the place to elaborate on such issues, in several
cases the critics are clearly right. However, of all currently available program-
ming languages that are widely supported, standardized, and extensively docu-
mented, Java seems to be the best choice for the purpose of this book. Its main
disadvantage is speed of execution—or lack of it. Executing a Java program is
several times slower than running a corresponding program written in C lan-
guage because the virtual machine has to translate the byte-code into machine
code before it can be executed. In our experience the difference is a factor of
three to five if the virtual machine uses a just-in-time compiler. Instead of trans-
lating each byte-code individually, a just-in-time compiler translates whole
chunks of byte-code into machine code, thereby achieving significant speedup.
However, if this is still to slow for your application, there are compilers that
translate Java programs directly into machine code, bypassing the byte-code
step. This code cannot be executed on other platforms, thereby sacrificing one
of Java’s most important advantages.

Updated and revised content

We finished writing the first edition of this book in 1999 and now, in April 2005,
are just polishing this second edition. The areas of data mining and machine
learning have matured in the intervening years. Although the core of material
in this edition remains the same, we have made the most of our opportunity to
update it to reflect the changes that have taken place over 5 years. There have
been errors to fix, errors that we had accumulated in our publicly available errata
file. Surprisingly few were found, and we hope there are even fewer in this
second edition. (The errata for the second edition may be found through the
book’s home page at http://www.cs.waikato.ac.nz/ml/weka/book.html.) We have
thoroughly edited the material and brought it up to date, and we practically
doubled the number of references. The most enjoyable part has been adding
new material. Here are the highlights.

Bowing to popular demand, we have added comprehensive information on
neural networks: the perceptron and closely related Winnow algorithm in
Section 4.6 and the multilayer perceptron and backpropagation algorithm



XXVl

PREFACE

in Section 6.3. We have included more recent material on implementing
nonlinear decision boundaries using both the kernel perceptron and radial basis
function networks. There is a new section on Bayesian networks, again in
response to readers’ requests, with a description of how to learn classifiers based
on these networks and how to implement them efficiently using all-dimensions
trees.

The Weka machine learning workbench that accompanies the book, a widely
used and popular feature of the first edition, has acquired a radical new look in
the form of an interactive interface—or rather, three separate interactive inter-
faces—that make it far easier to use. The primary one is the Explorer, which
gives access to all of Weka’s facilities using menu selection and form filling. The
others are the Knowledge Flow interface, which allows you to design configu-
rations for streamed data processing, and the Experimenter, with which you set
up automated experiments that run selected machine learning algorithms with
different parameter settings on a corpus of datasets, collect performance statis-
tics, and perform significance tests on the results. These interfaces lower the bar
for becoming a practicing data miner, and we include a full description of how
to use them. However, the book continues to stand alone, independent of Weka,
and to underline this we have moved all material on the workbench into a sep-
arate Part II at the end of the book.

In addition to becoming far easier to use, Weka has grown over the last 5
years and matured enormously in its data mining capabilities. It now includes
an unparalleled range of machine learning algorithms and related techniques.
The growth has been partly stimulated by recent developments in the field and
partly led by Weka users and driven by demand. This puts us in a position in
which we know a great deal about what actual users of data mining want, and
we have capitalized on this experience when deciding what to include in this
new edition.

The earlier chapters, containing more general and foundational material,
have suffered relatively little change. We have added more examples of fielded
applications to Chapter 1, a new subsection on sparse data and a little on string
attributes and date attributes to Chapter 2, and a description of interactive deci-
sion tree construction, a useful and revealing technique to help you grapple with
your data using manually built decision trees, to Chapter 3.

In addition to introducing linear decision boundaries for classification, the
infrastructure for neural networks, Chapter 4 includes new material on multi-
nomial Bayes models for document classification and on logistic regression. The
last 5 years have seen great interest in data mining for text, and this is reflected
in our introduction to string attributes in Chapter 2, multinomial Bayes for doc-
ument classification in Chapter 4, and text transformations in Chapter 7.
Chapter 4 includes a great deal of new material on efficient data structures for
searching the instance space: kD-trees and the recently invented ball trees. These



PREFACE XXiX

are used to find nearest neighbors efficiently and to accelerate distance-based
clustering.

Chapter 5 describes the principles of statistical evaluation of machine learn-
ing, which have not changed. The main addition, apart from a note on the Kappa
statistic for measuring the success of a predictor, is a more detailed treatment
of cost-sensitive learning. We describe how to use a classifier, built without
taking costs into consideration, to make predictions that are sensitive to cost;
alternatively, we explain how to take costs into account during the training
process to build a cost-sensitive model. We also cover the popular new tech-
nique of cost curves.

There are several additions to Chapter 6, apart from the previously men-
tioned material on neural networks and Bayesian network classifiers. More
details—gory details—are given of the heuristics used in the successful RIPPER
rule learner. We describe how to use model trees to generate rules for numeric
prediction. We show how to apply locally weighted regression to classification
problems. Finally, we describe the X-means clustering algorithm, which is a big
improvement on traditional k-means.

Chapter 7 on engineering the input and output has changed most, because
this is where recent developments in practical machine learning have been con-
centrated. We describe new attribute selection schemes such as race search and
the use of support vector machines and new methods for combining models
such as additive regression, additive logistic regression, logistic model trees, and
option trees. We give a full account of LogitBoost (which was mentioned in the
first edition but not described). There is a new section on useful transforma-
tions, including principal components analysis and transformations for text
mining and time series. We also cover recent developments in using unlabeled
data to improve classification, including the co-training and co-EM methods.

The final chapter of Part I on new directions and different perspectives has
been reworked to keep up with the times and now includes contemporary chal-
lenges such as adversarial learning and ubiquitous data mining.

Acknowledgments

Writing the acknowledgments is always the nicest part! A lot of people have
helped us, and we relish this opportunity to thank them. This book has arisen
out of the machine learning research project in the Computer Science Depart-
ment at the University of Waikato, New Zealand. We have received generous
encouragement and assistance from the academic staff members on that project:
John Cleary, Sally Jo Cunningham, Matt Humphrey, Lyn Hunt, Bob McQueen,
Lloyd Smith, and Tony Smith. Special thanks go to Mark Hall, Bernhard
Pfahringer, and above all Geoff Holmes, the project leader and source of inspi-



XXX

PREFACE

ration. All who have worked on the machine learning project here have con-
tributed to our thinking: we would particularly like to mention Steve Garner,
Stuart Inglis, and Craig Nevill-Manning for helping us to get the project off the
ground in the beginning when success was less certain and things were more
difficult.

The Weka system that illustrates the ideas in this book forms a crucial com-
ponent of it. It was conceived by the authors and designed and implemented by
Eibe Frank, along with Len Trigg and Mark Hall. Many people in the machine
learning laboratory at Waikato made significant contributions. Since the first
edition of the book the Weka team has expanded considerably: so many people
have contributed that it is impossible to acknowledge everyone properly. We are
grateful to Remco Bouckaert for his implementation of Bayesian networks, Dale
Fletcher for many database-related aspects, Ashraf Kibriya and Richard Kirkby
for contributions far too numerous to list, Niels Landwehr for logistic model
trees, Abdelaziz Mahoui for the implementation of K*, Stefan Mutter for asso-
ciation rule mining, Gabi Schmidberger and Malcolm Ware for numerous mis-
cellaneous contributions, Tony Voyle for least-median-of-squares regression,
Yong Wang for Pace regression and the implementation of M5’, and Xin Xu for
JRip, logistic regression, and many other contributions. Our sincere thanks go
to all these people for their dedicated work and to the many contributors to
Weka from outside our group at Waikato.

Tucked away as we are in a remote (but very pretty) corner of the Southern
Hemisphere, we greatly appreciate the visitors to our department who play
a crucial role in acting as sounding boards and helping us to develop our
thinking. We would like to mention in particular Rob Holte, Carl Gutwin, and
Russell Beale, each of whom visited us for several months; David Aha, who
although he only came for a few days did so at an early and fragile stage of the
project and performed a great service by his enthusiasm and encouragement;
and Kai Ming Ting, who worked with us for 2 years on many of the topics
described in Chapter 7 and helped to bring us into the mainstream of machine
learning.

Students at Waikato have played a significant role in the development of the
project. Jamie Littin worked on ripple-down rules and relational learning. Brent
Martin explored instance-based learning and nested instance-based representa-
tions. Murray Fife slaved over relational learning, and Nadeeka Madapathage
investigated the use of functional languages for expressing machine learning
algorithms. Other graduate students have influenced us in numerous ways, par-
ticularly Gordon Paynter, YingYing Wen, and Zane Bray, who have worked with
us on text mining. Colleagues Steve Jones and Malika Mahoui have also made
far-reaching contributions to these and other machine learning projects. More
recently we have learned much from our many visiting students from Freiburg,
including Peter Reutemann and Nils Weidmann.



PREFACE XXXi

Ian Witten would like to acknowledge the formative role of his former stu-
dents at Calgary, particularly Brent Krawchuk, Dave Maulsby, Thong Phan, and
Tanja Mitrovic, all of whom helped him develop his early ideas in machine
learning, as did faculty members Bruce MacDonald, Brian Gaines, and David
Hill at Calgary and John Andreae at the University of Canterbury.

Eibe Frank is indebted to his former supervisor at the University of
Karlsruhe, Klaus-Peter Huber (now with SAS Institute), who infected him with
the fascination of machines that learn. On his travels Eibe has benefited from
interactions with Peter Turney, Joel Martin, and Berry de Bruijn in Canada and
with Luc de Raedt, Christoph Helma, Kristian Kersting, Stefan Kramer, Ulrich
Riickert, and Ashwin Srinivasan in Germany.

Diane Cerra and Asma Stephan of Morgan Kaufmann have worked hard to
shape this book, and Lisa Royse, our production editor, has made the process
go smoothly. Bronwyn Webster has provided excellent support at the Waikato
end.

We gratefully acknowledge the unsung efforts of the anonymous reviewers,
one of whom in particular made a great number of pertinent and constructive
comments that helped us to improve this book significantly. In addition, we
would like to thank the librarians of the Repository of Machine Learning Data-
bases at the University of California, Irvine, whose carefully collected datasets
have been invaluable in our research.

Our research has been funded by the New Zealand Foundation for Research,
Science and Technology and the Royal Society of New Zealand Marsden Fund.
The Department of Computer Science at the University of Waikato has gener-
ously supported us in all sorts of ways, and we owe a particular debt of
gratitude to Mark Apperley for his enlightened leadership and warm encour-
agement. Part of the first edition was written while both authors were visiting
the University of Calgary, Canada, and the support of the Computer Science
department there is gratefully acknowledged—as well as the positive and helpful
attitude of the long-suffering students in the machine learning course on whom
we experimented.

In producing the second edition Ian was generously supported by Canada’s
Informatics Circle of Research Excellence and by the University of Lethbridge
in southern Alberta, which gave him what all authors yearn for—a quiet space
in pleasant and convivial surroundings in which to work.

Last, and most of all, we are grateful to our families and partners. Pam, Anna,
and Nikki were all too well aware of the implications of having an author in the
house (“not again!”) but let Ian go ahead and write the book anyway. Julie was
always supportive, even when Eibe had to burn the midnight oil in the machine
learning lab, and Immo and Ollig provided exciting diversions. Between us we
hail from Canada, England, Germany, Ireland, and Samoa: New Zealand has
brought us together and provided an ideal, even idyllic, place to do this work.






earning Tools

Iques







Human in vitro fertilization involves collecting several eggs from a woman’s
ovaries, which, after fertilization with partner or donor sperm, produce several
embryos. Some of these are selected and transferred to the woman’s uterus. The
problem is to select the “best” embryos to use—the ones that are most likely to
survive. Selection is based on around 60 recorded features of the embryos—
characterizing their morphology, oocyte, follicle, and the sperm sample. The
number of features is sufficiently large that it is difficult for an embryologist to
assess them all simultaneously and correlate historical data with the crucial
outcome of whether that embryo did or did not result in a live child. In a
research project in England, machine learning is being investigated as a tech-
nique for making the selection, using as training data historical records of
embryos and their outcome.

Every year, dairy farmers in New Zealand have to make a tough business deci-
sion: which cows to retain in their herd and which to sell off to an abattoir. Typi-
cally, one-fifth of the cows in a dairy herd are culled each year near the end of
the milking season as feed reserves dwindle. Each cow’s breeding and milk pro-

J



11

CHAPTER 1 | WHAT’S IT ALL ABOUT?

duction history influences this decision. Other factors include age (a cow is
nearing the end of its productive life at 8 years), health problems, history of dif-
ficult calving, undesirable temperament traits (kicking or jumping fences), and
not being in calf for the following season. About 700 attributes for each of
several million cows have been recorded over the years. Machine learning is
being investigated as a way of ascertaining what factors are taken into account
by successful farmers—not to automate the decision but to propagate their skills
and experience to others.

Life and death. From Europe to the antipodes. Family and business. Machine
learning is a burgeoning new technology for mining knowledge from data, a
technology that a lot of people are starting to take seriously.

Data mining and machine learning

We are overwhelmed with data. The amount of data in the world, in our lives,
seems to go on and on increasing—and there’s no end in sight. Omnipresent
personal computers make it too easy to save things that previously we would
have trashed. Inexpensive multigigabyte disks make it too easy to postpone deci-
sions about what to do with all this stuff—we simply buy another disk and keep
it all. Ubiquitous electronics record our decisions, our choices in the super-
market, our financial habits, our comings and goings. We swipe our way through
the world, every swipe a record in a database. The World Wide Web overwhelms
us with information; meanwhile, every choice we make is recorded. And all these
are just personal choices: they have countless counterparts in the world of com-
merce and industry. We would all testify to the growing gap between the gener-
ation of data and our understanding of it. As the volume of data increases,
inexorably, the proportion of it that people understand decreases, alarmingly.
Lying hidden in all this data is information, potentially useful information, that
is rarely made explicit or taken advantage of.

This book is about looking for patterns in data. There is nothing new about
this. People have been seeking patterns in data since human life began. Hunters
seek patterns in animal migration behavior, farmers seek patterns in crop
growth, politicians seek patterns in voter opinion, and lovers seek patterns in
their partners’ responses. A scientist’s job (like a baby’s) is to make sense of data,
to discover the patterns that govern how the physical world works and encap-
sulate them in theories that can be used for predicting what will happen in new
situations. The entrepreneur’s job is to identify opportunities, that is, patterns
in behavior that can be turned into a profitable business, and exploit them.

In data mining, the data is stored electronically and the search is automated—
or at least augmented—by computer. Even this is not particularly new. Econo-
mists, statisticians, forecasters, and communication engineers have long worked



1.1 DATA MINING AND MACHINE LEARNING 5

with the idea that patterns in data can be sought automatically, identified,
validated, and used for prediction. What is new is the staggering increase in
opportunities for finding patterns in data. The unbridled growth of databases
in recent years, databases on such everyday activities as customer choices, brings
data mining to the forefront of new business technologies. It has been estimated
that the amount of data stored in the world’s databases doubles every 20
months, and although it would surely be difficult to justify this figure in any
quantitative sense, we can all relate to the pace of growth qualitatively. As the
flood of data swells and machines that can undertake the searching become
commonplace, the opportunities for data mining increase. As the world grows
in complexity, overwhelming us with the data it generates, data mining becomes
our only hope for elucidating the patterns that underlie it. Intelligently analyzed
data is a valuable resource. It can lead to new insights and, in commercial set-
tings, to competitive advantages.

Data mining is about solving problems by analyzing data already present in
databases. Suppose, to take a well-worn example, the problem is fickle customer
loyalty in a highly competitive marketplace. A database of customer choices,
along with customer profiles, holds the key to this problem. Patterns of
behavior of former customers can be analyzed to identify distinguishing charac-
teristics of those likely to switch products and those likely to remain loyal. Once
such characteristics are found, they can be put to work to identify present cus-
tomers who are likely to jump ship. This group can be targeted for special treat-
ment, treatment too costly to apply to the customer base as a whole. More
positively, the same techniques can be used to identify customers who might be
attracted to another service the enterprise provides, one they are not presently
enjoying, to target them for special offers that promote this service. In today’s
highly competitive, customer-centered, service-oriented economy, data is the
raw material that fuels business growth—if only it can be mined.

Data mining is defined as the process of discovering patterns in data. The
process must be automatic or (more usually) semiautomatic. The patterns
discovered must be meaningful in that they lead to some advantage, usually
an economic advantage. The data is invariably present in substantial
quantities.

How are the patterns expressed? Useful patterns allow us to make nontrivial
predictions on new data. There are two extremes for the expression of a pattern:
as a black box whose innards are effectively incomprehensible and as a trans-
parent box whose construction reveals the structure of the pattern. Both, we are
assuming, make good predictions. The difference is whether or not the patterns
that are mined are represented in terms of a structure that can be examined,
reasoned about, and used to inform future decisions. Such patterns we call struc-
tural because they capture the decision structure in an explicit way. In other
words, they help to explain something about the data.



CHAPTER 1 | WHAT’S IT ALL ABOUT?

Now, finally, we can say what this book is about. It is about techniques for
finding and describing structural patterns in data. Most of the techniques that
we cover have developed within a field known as machine learning. But first let
us look at what structural patterns are.

Describing structural patterns

What is meant by structural patterns? How do you describe them? And what
form does the input take? We will answer these questions by way of illustration
rather than by attempting formal, and ultimately sterile, definitions. There will
be plenty of examples later in this chapter, but let’s examine one right now to
get a feeling for what we’re talking about.

Look at the contact lens data in Table 1.1. This gives the conditions under
which an optician might want to prescribe soft contact lenses, hard contact
lenses, or no contact lenses at all; we will say more about what the individual

Table 1.1 The contact lens data.
Spectacle Tear production Recommended

Age prescription Astigmatism rate lenses
young myope no reduced none
young myope no normal soft
young myope yes reduced none
young myope yes normal hard
young hypermetrope no reduced none
young hypermetrope no normal soft
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-preshyopic myope no reduced none
pre-preshyopic myope no normal soft
pre-preshyopic myope yes reduced none
pre-preshyopic myope yes normal hard
pre-preshyopic hypermetrope no reduced none
pre-preshyopic hypermetrope no normal soft
pre-preshyopic hypermetrope yes reduced none
pre-preshyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
preshyopic myope yes reduced none
preshyopic myope yes normal hard
preshyopic hypermetrope no reduced none
preshyopic hypermetrope no normal soft
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none




1.1 DATA MINING AND MACHINE LEARNING 7

features mean later. Each line of the table is one of the examples. Part of a struc-
tural description of this information might be as follows:

If tear production rate = reduced then recommendation = none
Otherwise, if age = young and astigmatic = no
then recommendation = soft

Structural descriptions need not necessarily be couched as rules such as these.
Decision trees, which specify the sequences of decisions that need to be made
and the resulting recommendation, are another popular means of expression.

This example is a very simplistic one. First, all combinations of possible
values are represented in the table. There are 24 rows, representing three possi-
ble values of age and two values each for spectacle prescription, astigmatism,
and tear production rate (3 X 2 X 2 X 2 = 24). The rules do not really general-
ize from the data; they merely summarize it. In most learning situations, the set
of examples given as input is far from complete, and part of the job is to gen-
eralize to other, new examples. You can imagine omitting some of the rows in
the table for which tear production rate is reduced and still coming up with the
rule

If tear production rate = reduced then recommendation = none

which would generalize to the missing rows and fill them in correctly. Second,
values are specified for all the features in all the examples. Real-life datasets
invariably contain examples in which the values of some features, for some
reason or other, are unknown—for example, measurements were not taken or
were lost. Third, the preceding rules classify the examples correctly, whereas
often, because of errors or noise in the data, misclassifications occur even on the
data that is used to train the classifier.

Machine learning

Now that we have some idea about the inputs and outputs, let’s turn to machine
learning. What is learning, anyway? What is machine learning? These are philo-
sophic questions, and we will not be much concerned with philosophy in this
book; our emphasis is firmly on the practical. However, it is worth spending a
few moments at the outset on fundamental issues, just to see how tricky they
are, before rolling up our sleeves and looking at machine learning in practice.
Our dictionary defines “to learn” as follows:

To get knowledge of by study, experience, or being taught;
To become aware by information or from observation;

To commit to memory;

To be informed of, ascertain;

To receive instruction.



CHAPTER 1 | WHAT’S IT ALL ABOUT?

These meanings have some shortcomings when it comes to talking about com-
puters. For the first two, it is virtually impossible to test whether learning has
been achieved or not. How do you know whether a machine has got knowledge
of something? You probably can’t just ask it questions; even if you could, you
wouldn’t be testing its ability to learn but would be testing its ability to answer
questions. How do you know whether it has become aware of something? The
whole question of whether computers can be aware, or conscious, is a burning
philosophic issue. As for the last three meanings, although we can see what they
denote in human terms, merely “committing to memory” and “receiving
instruction” seem to fall far short of what we might mean by machine learning.
They are too passive, and we know that computers find these tasks trivial.
Instead, we are interested in improvements in performance, or at least in the
potential for performance, in new situations. You can “commit something to
memory” or “be informed of something” by rote learning without being able to
apply the new knowledge to new situations. You can receive instruction without
benefiting from it at all.

Earlier we defined data mining operationally as the process of discovering
patterns, automatically or semiautomatically, in large quantities of data—and
the patterns must be useful. An operational definition can be formulated in the
same way for learning:

Things learn when they change their behavior in a way that makes them
perform better in the future.

This ties learning to performance rather than knowledge. You can test learning
by observing the behavior and comparing it with past behavior. This is a much
more objective kind of definition and appears to be far more satisfactory.

But there’s still a problem. Learning is a rather slippery concept. Lots of things
change their behavior in ways that make them perform better in the future, yet
we wouldn’t want to say that they have actually learned. A good example is a
comfortable slipper. Has it learned the shape of your foot? It has certainly
changed its behavior to make it perform better as a slipper! Yet we would hardly
want to call this learning. In everyday language, we often use the word “train-
ing” to denote a mindless kind of learning. We train animals and even plants,
although it would be stretching the word a bit to talk of training objects such
as slippers that are not in any sense alive. But learning is different. Learning
implies thinking. Learning implies purpose. Something that learns has to do so
intentionally. That is why we wouldn’t say that a vine has learned to grow round
a trellis in a vineyard—we’d say it has been trained. Learning without purpose
is merely training. Or, more to the point, in learning the purpose is the learner’s,
whereas in training it is the teacher’s.

Thus on closer examination the second definition of learning, in operational,
performance-oriented terms, has its own problems when it comes to talking about



12

1.2 SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS g

computers. To decide whether something has actually learned, you need to see
whether it intended to or whether there was any purpose involved. That makes
the concept moot when applied to machines because whether artifacts can behave
purposefully is unclear. Philosophic discussions of what is really meant by “learn-
ing,” like discussions of what is really meant by “intention” or “purpose,” are
fraught with difficulty. Even courts of law find intention hard to grapple with.

Data mining

Fortunately, the kind of learning techniques explained in this book do not
present these conceptual problems—they are called machine learning without
really presupposing any particular philosophic stance about what learning actu-
ally is. Data mining is a practical topic and involves learning in a practical, not
a theoretical, sense. We are interested in techniques for finding and describing
structural patterns in data as a tool for helping to explain that data and make
predictions from it. The data will take the form of a set of examples—examples
of customers who have switched loyalties, for instance, or situations in which
certain kinds of contact lenses can be prescribed. The output takes the form of
predictions about new examples—a prediction of whether a particular customer
will switch or a prediction of what kind of lens will be prescribed under given
circumstances. But because this book is about finding and describing patterns
in data, the output may also include an actual description of a structure that
can be used to classify unknown examples to explain the decision. As well as
performance, it is helpful to supply an explicit representation of the knowledge
that is acquired. In essence, this reflects both definitions of learning considered
previously: the acquisition of knowledge and the ability to use it.

Many learning techniques look for structural descriptions of what is learned,
descriptions that can become fairly complex and are typically expressed as sets
of rules such as the ones described previously or the decision trees described
later in this chapter. Because they can be understood by people, these descrip-
tions serve to explain what has been learned and explain the basis for new pre-
dictions. Experience shows that in many applications of machine learning to
data mining, the explicit knowledge structures that are acquired, the structural
descriptions, are at least as important, and often very much more important,
than the ability to perform well on new examples. People frequently use data
mining to gain knowledge, not just predictions. Gaining knowledge from data
certainly sounds like a good idea if you can do it. To find out how, read on!

Simple examples: The weather problem and others

We use a lot of examples in this book, which seems particularly appropriate con-
sidering that the book is all about learning from examples! There are several



CHAPTER 1 | WHAT’S IT ALL ABOUT?

standard datasets that we will come back to repeatedly. Different datasets tend
to expose new issues and challenges, and it is interesting and instructive to have
in mind a variety of problems when considering learning methods. In fact, the
need to work with different datasets is so important that a corpus containing
around 100 example problems has been gathered together so that different algo-
rithms can be tested and compared on the same set of problems.

The illustrations in this section are all unrealistically simple. Serious appli-
cation of data mining involves thousands, hundreds of thousands, or even mil-
lions of individual cases. But when explaining what algorithms do and how they
work, we need simple examples that capture the essence of the problem but are
small enough to be comprehensible in every detail. We will be working with the
illustrations in this section throughout the book, and they are intended to be
“academic” in the sense that they will help us to understand what is going on.
Some actual fielded applications of learning techniques are discussed in Section
1.3, and many more are covered in the books mentioned in the Further reading
section at the end of the chapter.

Another problem with actual real-life datasets is that they are often propri-
etary. No one is going to share their customer and product choice database with
you so that you can understand the details of their data mining application and
how it works. Corporate data is a valuable asset, one whose value has increased
enormously with the development of data mining techniques such as those
described in this book. Yet we are concerned here with understanding how the
methods used for data mining work and understanding the details of these
methods so that we can trace their operation on actual data. That is why our
illustrations are simple ones. But they are not simplistic: they exhibit the fea-
tures of real datasets.

The weather problem

The weather problem is a tiny dataset that we will use repeatedly to illustrate
machine learning methods. Entirely fictitious, it supposedly concerns the con-
ditions that are suitable for playing some unspecified game. In general, instances
in a dataset are characterized by the values of features, or attributes, that measure
different aspects of the instance. In this case there are four attributes: outlook,
temperature, humidity, and windy. The outcome is whether to play or not.

In its simplest form, shown in Table 1.2, all four attributes have values that
are symbolic categories rather than numbers. Outlook can be sunny, overcast, or
rainy; temperature can be hot, mild, or cool; humidity can be high or normal;
and windy can be true or false. This creates 36 possible combinations (3 X 3 X
2 X 2 = 36), of which 14 are present in the set of input examples.

A set of rules learned from this information—not necessarily a very good
one—might look as follows:



1.2 SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS ] ]

Table 1.2 The weather data.
Outlook Temperature Humidity Windy Play
sunny hot high false no
sunny hot high true no
overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no
overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes
overcast mild high true yes
overcast hot normal false yes
rainy mild high true no

If outlook = sunny and humidity = high then play = no

If outlook = rainy and windy = true then play = no
If outlook = overcast then play = yes
If humidity = normal then play = yes
If none of the above then play = yes

These rules are meant to be interpreted in order: the first one, then if it doesn’t
apply the second, and so on. A set of rules that are intended to be interpreted
in sequence is called a decision list. Interpreted as a decision list, the rules
correctly classify all of the examples in the table, whereas taken individually, out
of context, some of the rules are incorrect. For example, the rule if humidity =
normal then play = ves gets one of the examples wrong (check which one).
The meaning of a set of rules depends on how it is interpreted—not
surprisingly!

In the slightly more complex form shown in Table 1.3, two of the attributes—
temperature and humidity—have numeric values. This means that any learn-
ing method must create inequalities involving these attributes rather than
simple equality tests, as in the former case. This is called a numeric-attribute
problem—in this case, a mixed-attribute problem because not all attributes are
numeric.

Now the first rule given earlier might take the following form:

If outlook = sunny and humidity > 83 then play = no

A slightly more complex process is required to come up with rules that involve
numeric tests.



CHAPTER 1 | WHAT’S IT ALL ABOUT?

Table 1.3 Weather data with some numeric attributes.

Outlook Temperature Humidity Windy Play
sunny 85 85 false no
sunny 80 90 true no
overcast 83 86 false yes
rainy 70 96 false yes
rainy 68 80 false yes
rainy 65 70 true no
overcast 64 65 true yes
sunny 72 95 false no
sunny 69 70 false yes
rainy 75 80 false yes
sunny 75 70 true yes
overcast 72 90 true yes
overcast 81 75 false yes
rainy n 91 true no

The rules we have seen so far are classification rules: they predict the classifi-
cation of the example in terms of whether to play or not. It is equally possible
to disregard the classification and just look for any rules that strongly associate
different attribute values. These are called association rules. Many association
rules can be derived from the weather data in Table 1.2. Some good ones are as
follows:

If temperature = cool then humidity = normal
If humidity = normal and windy = false then play = yes

If outlook = sunny and play = no then humidity = high
If windy = false and play = no then outlook = sunny

and humidity = high.

All these rules are 100% correct on the given data; they make no false predic-
tions. The first two apply to four examples in the dataset, the third to three
examples, and the fourth to two examples. There are many other rules: in fact,
nearly 60 association rules can be found that apply to two or more examples of
the weather data and are completely correct on this data. If you look for rules
that are less than 100% correct, then you will find many more. There are so
many because unlike classification rules, association rules can “predict” any of
the attributes, not just a specified class, and can even predict more than one
thing. For example, the fourth rule predicts both that outlook will be sunny and
that humidity will be high.



1.2 SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS ]3

Contact lenses: An idealized problem

The contact lens data introduced earlier tells you the kind of contact lens to pre-
scribe, given certain information about a patient. Note that this example is
intended for illustration only: it grossly oversimplifies the problem and should
certainly not be used for diagnostic purposes!

The first column of Table 1.1 gives the age of the patient. In case you're won-
dering, presbyopia is a form of longsightedness that accompanies the onset of
middle age. The second gives the spectacle prescription: myope means short-
sighted and hypermetrope means longsighted. The third shows whether the
patient is astigmatic, and the fourth relates to the rate of tear production, which
is important in this context because tears lubricate contact lenses. The final
column shows which kind of lenses to prescribe: hard, soft, or none. All possi-
ble combinations of the attribute values are represented in the table.

A sample set of rules learned from this information is shown in Figure 1.1.
This is a rather large set of rules, but they do correctly classify all the examples.
These rules are complete and deterministic: they give a unique prescription for
every conceivable example. Generally, this is not the case. Sometimes there are
situations in which no rule applies; other times more than one rule may apply,
resulting in conflicting recommendations. Sometimes probabilities or weights

If tear production rate = reduced then recommendation = none
If age = young and astigmatic = no and
tear production rate = normal then recommendation = soft
If age = pre-presbyopic and astigmatic = no and
tear production rate = normal then recommendation = soft
If age = presbyopic and spectacle prescription = myope and
astigmatic = no then recommendation = none
If spectacle prescription = hypermetrope and astigmatic = no and
tear production rate = normal then recommendation = soft
If spectacle prescription = myope and astigmatic = yes and
tear production rate = normal then recommendation = hard
If age = young and astigmatic = yes and
tear production rate = normal then recommendation = hard
If age = pre-presbyopic and
spectacle prescription = hypermetrope and astigmatic = yes
then recommendation = none
If age = presbyopic and spectacle prescription = hypermetrope
and astigmatic = yes then recommendation = none

Figure 1.1 Rules for the contact lens data.



CHAPTER 1 | WHAT’S IT ALL ABOUT?

may be associated with the rules themselves to indicate that some are more
important, or more reliable, than others.

You might be wondering whether there is a smaller rule set that performs as
well. If so, would you be better off using the smaller rule set and, if so, why?
These are exactly the kinds of questions that will occupy us in this book. Because
the examples form a complete set for the problem space, the rules do no more
than summarize all the information that is given, expressing it in a different and
more concise way. Even though it involves no generalization, this is often a very
useful thing to do! People frequently use machine learning techniques to gain
insight into the structure of their data rather than to make predictions for new
cases. In fact, a prominent and successful line of research in machine learning
began as an attempt to compress a huge database of possible chess endgames
and their outcomes into a data structure of reasonable size. The data structure
chosen for this enterprise was not a set of rules but a decision tree.

Figure 1.2 shows a structural description for the contact lens data in the form
of a decision tree, which for many purposes is a more concise and perspicuous
representation of the rules and has the advantage that it can be visualized more
easily. (However, this decision tree—in contrast to the rule set given in Figure
1.1—classifies two examples incorrectly.) The tree calls first for a test on tear
production rate, and the first two branches correspond to the two possible out-
comes. If tear production rate is reduced (the left branch), the outcome is none.
If it is normal (the right branch), a second test is made, this time on astigma-
tism. Eventually, whatever the outcome of the tests, a leaf of the tree is reached

tear production rate

reduced normal

none
yes
myope hypermetrope
Figure 1.2 Decision tree for the hard none

contact lens data.



1.2 SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS ]5

that dictates the contact lens recommendation for that case. The question of
what is the most natural and easily understood format for the output from a
machine learning scheme is one that we will return to in Chapter 3.

Irises: A classic numeric dataset

The iris dataset, which dates back to seminal work by the eminent statistician

R.A. Fisher in the mid-1930s and is arguably the most famous dataset used in

data mining, contains 50 examples each of three types of plant: Iris setosa, Iris

versicolor, and Iris virginica. It is excerpted in Table 1.4. There are four attrib-

utes: sepal length, sepal width, petal length, and petal width (all measured in cen-

timeters). Unlike previous datasets, all attributes have values that are numeric.
The following set of rules might be learned from this dataset:

If petal length < 2.45 then Iris setosa

If sepal width < 2.10 then Iris versicolor

If sepal width < 2.45 and petal length < 4.55 then Iris wversicolor
If sepal width < 2.95 and petal width < 1.35 then Iris versicolor
If petal length
If sepal length

> 2.45 and petal length < 4.45 then Iris versicolor
> 5.85 and petal length < 4.75 then Iris versicolor

Table 1.4 The iris data.

Sepal Sepal width Petal length Petal width

length (cm) (cm) (cm) (cm) Type
1 5.1 35 1.4 0.2 Iris setosa
2 49 3.0 1.4 0.2 Iris setosa
3 47 3.2 1.3 0.2 Iris setosa
4 4.6 3.1 15 0.2 Iris setosa
5 5.0 3.6 14 0.2 Iris setosa
51 . 7.0 3.2 47 1.4 Iris versicolor
52 6.4 3.2 45 15 Iris versicolor
53 6.9 3.1 49 15 Iris versicolor
54 55 2.3 4.0 1.3 Iris versicolor
55 6.5 2.8 4.6 15 Iris versicolor
101 63 33 6.0 25 Iris virginica
102 5.8 2.7 5.1 1.9 Iris virginica
103 7.1 3.0 5.9 2.1 Iris virginica
104 6.3 2.9 5.6 1.8 Iris virginica

105 6.5 3.0 5.8 2.2 Iris virginica




CHAPTER 1 | WHAT’S IT ALL ABOUT?

If sepal width < 2.55 and petal length < 4.95 and
petal width < 1.55 then Iris versicolor
If petal length = 2.45 and petal length < 4.95 and
petal width < 1.55 then Iris versicolor
If sepal length > 6.55 and petal length < 5.05 then Iris versicolor
If sepal width < 2.75 and petal width < 1.65 and
sepal length 6.05 then Iris versicolor
5.85 and sepal length < 5.95 and

4.85 then Iris versicolor

If sepal length
petal length

If petal length

If petal width 1.85 then Iris virginica

If petal width 1.75 and sepal width < 3.05 then Iris virginica

If petal length > 4.95 and petal width < 1.55 then Iris virginica

<
>
<
>

5.15 then Iris virginica

\YAN\Y]

These rules are very cumbersome, and we will see in Chapter 3 how more
compact rules can be expressed that convey the same information.

CPU performance: Introducing numeric prediction

Although the iris dataset involves numeric attributes, the outcome—the type of
iris—is a category, not a numeric value. Table 1.5 shows some data for which
the outcome and the attributes are numeric. It concerns the relative perform-
ance of computer processing power on the basis of a number of relevant
attributes; each row represents 1 of 209 different computer configurations.
The classic way of dealing with continuous prediction is to write the outcome
as a linear sum of the attribute values with appropriate weights, for example:

Table 1.5 The CPU performance data.

Main
memory (KB) Channels
Cycle - Cache
time (ns) Min. Max. (KB) Min. Max. Performance
MYCT MMIN MMAX CACH CHMIN CHMAX PRP

1 125 256 6000 256 16 128 198
2 29 8000 32000 32 8 32 269
3 29 8000 32000 32 8 32 220
4 29 8000 32000 32 8 32 172
5 29 8000 16000 32 8 16 132
207 125 2000 8000 0 2 14 52
208 480 512 8000 32 0 0 67

209 480 1000 4000 0 0 0 45




1.2 SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS ]7

PRP =-55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX
+ 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX.

(The abbreviated variable names are given in the second row of the table.) This
is called a regression equation, and the process of determining the weights is
called regression, a well-known procedure in statistics that we will review in
Chapter 4. However, the basic regression method is incapable of discovering
nonlinear relationships (although variants do exist—indeed, one will be
described in Section 6.3), and in Chapter 3 we will examine different represen-
tations that can be used for predicting numeric quantities.

In the iris and central processing unit (CPU) performance data, all the
attributes have numeric values. Practical situations frequently present a mixture
of numeric and nonnumeric attributes.

Labor negotiations: A more realistic example

The labor negotiations dataset in Table 1.6 summarizes the outcome of Cana-
dian contract negotiations in 1987 and 1988. It includes all collective agreements
reached in the business and personal services sector for organizations with at
least 500 members (teachers, nurses, university staff, police, etc.). Each case con-
cerns one contract, and the outcome is whether the contract is deemed accept-
able or unacceptable. The acceptable contracts are ones in which agreements
were accepted by both labor and management. The unacceptable ones are either
known offers that fell through because one party would not accept them or
acceptable contracts that had been significantly perturbed to the extent that, in
the view of experts, they would not have been accepted.

There are 40 examples in the dataset (plus another 17 which are normally
reserved for test purposes). Unlike the other tables here, Table 1.6 presents the
examples as columns rather than as rows; otherwise, it would have to be
stretched over several pages. Many of the values are unknown or missing, as
indicated by question marks.

This is a much more realistic dataset than the others we have seen. It con-
tains many missing values, and it seems unlikely that an exact classification can
be obtained.

Figure 1.3 shows two decision trees that represent the dataset. Figure 1.3(a)
is simple and approximate: it doesn’t represent the data exactly. For example, it
will predict bad for some contracts that are actually marked good. But it does
make intuitive sense: a contract is bad (for the employee!) if the wage increase
in the first year is too small (less than 2.5%). If the first-year wage increase is
larger than this, it is good if there are lots of statutory holidays (more than 10
days). Even if there are fewer statutory holidays, it is good if the first-year wage
increase is large enough (more than 4%).



]H CHAPTER 1 | WHAT’S IT ALL ABOUT?

Table 1.6 The labor negotiations data.
Attribute Type 1 2 3 40
duration years 1 2 3 2
wage increase 1st year percentage 2% 4% 4.3% 45
wage increase 2nd year percentage ? 5% 4.4% 4.0
wage increase 3rd year percentage ? ? ? ?
cost of living adjustment {none, tcf, tc} none  tcf ? none
working hours per week hours 28 35 38 40
pension {none, ret-allw, empl-cntr}  none  ? ? ?
standby pay percentage ? 13% ? ?
shift-work supplement percentage ? 5% 4% 4
education allowance {yes, no} yes ? ? ?
statutory holidays days " 15 12 12
vacation {below-avg, avg, gen} avg gen gen avg
long-term disability assistance  {yes, no} no ? ? yes
dental plan contribution {none, half, full} none ? full full
bereavement assistance {yes, no} no ? ? yes
health plan contribution {none, half, full} none ? full half
acceptability of contract {good, bad} bad good  good good

Figure 1.3(b) is a more complex decision tree that represents the same

dataset. In fact, this is a more accurate representation of the actual dataset that
was used to create the tree. But it is not necessarily a more accurate representa-
tion of the underlying concept of good versus bad contracts. Look down the left
branch. It doesn’t seem to make sense intuitively that, if the working hours
exceed 36, a contract is bad if there is no health-plan contribution or a full
health-plan contribution but is good if there is a half health-plan contribution.
It is certainly reasonable that the health-plan contribution plays a role in the
decision but not if half is good and both full and none are bad. It seems likely
that this is an artifact of the particular values used to create the decision tree
rather than a genuine feature of the good versus bad distinction.

The tree in Figure 1.3(b) is more accurate on the data that was used to train
the classifier but will probably perform less well on an independent set of test
data. It is “overfitted” to the training data—it follows it too slavishly. The tree
in Figure 1.3(a) is obtained from the one in Figure 1.3(b) by a process of
pruning, which we will learn more about in Chapter 6.

Soybean classification: A classic machine learning success

An often-quoted early success story in the application of machine learning to
practical problems is the identification of rules for diagnosing soybean diseases.
The data is taken from questionnaires describing plant diseases. There are about



19

SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS

1.2

poob peq

Jeak 151y
9sealdul abem

peq

“eJep SUOT)BII0SoU JOqe[ Y} 10J $991) UOTISIIJ €' ainbig

uonnguiuod ueid yieay

Soom Jad

shepijoy Aloinieis sinoy buiyiom

Jeak 1su1y
9sealdul abem

@

peq

poob

(e)

skepijoy Aloyniels

1e3A 1511} asealdul abem



20

CHAPTER 1 | WHAT’S IT ALL ABOUT?

680 examples, each representing a diseased plant. Plants were measured on 35
attributes, each one having a small set of possible values. Examples are labeled
with the diagnosis of an expert in plant biology: there are 19 disease categories
altogether—horrible-sounding diseases such as diaporthe stem canker, rhizoc-
tonia root rot, and bacterial blight, to mention just a few.

Table 1.7 gives the attributes, the number of different values that each can
have, and a sample record for one particular plant. The attributes are placed into
different categories just to make them easier to read.

Here are two example rules, learned from this data:

If [leaf condition is normal and
stem condition is abnormal and
stem cankers is below soil line and
canker lesion color 1is brown]
then
diagnosis is rhizoctonia root rot

If [leaf malformation is absent and
stem condition is abnormal and
stem cankers is below soil line and
canker lesion color 1is brown]

then
diagnosis is rhizoctonia root rot

These rules nicely illustrate the potential role of prior knowledge—often called
domain knowledge—in machine learning, because the only difference between
the two descriptions is leaf condition is normal versus leaf malformation is
absent. Now, in this domain, if the leaf condition is normal then leaf malfor-
mation is necessarily absent, so one of these conditions happens to be a special
case of the other. Thus if the first rule is true, the second is necessarily true as
well. The only time the second rule comes into play is when leaf malformation
is absent but leaf condition is not normal, that is, when something other than
malformation is wrong with the leaf. This is certainly not apparent from a casual
reading of the rules.

Research on this problem in the late 1970s found that these diagnostic rules
could be generated by a machine learning algorithm, along with rules for every
other disease category, from about 300 training examples. These training
examples were carefully selected from the corpus of cases as being quite differ-
ent from one another—"“far apart” in the example space. At the same time, the
plant pathologist who had produced the diagnoses was interviewed, and his
expertise was translated into diagnostic rules. Surprisingly, the computer-
generated rules outperformed the expert-derived rules on the remaining test
examples. They gave the correct disease top ranking 97.5% of the time com-
pared with only 72% for the expert-derived rules. Furthermore, not only did



1.2 SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS 2]

Table 1.7 The soybean data.
Number
Attribute of values Sample value
Environment time of occurrence 7 July
precipitation 3 above normal
temperature 3 normal
cropping history 4 same as last year
hail damage 2 yes
damaged area 4 scattered
severity 3 severe
plant height 2 normal
plant growth 2 abnormal
seed treatment 3 fungicide
germination 3 less than 80%
Seed condition 2 normal
mold growth 2 absent
discoloration 2 absent
size 2 normal
shriveling 2 absent
Fruit condition of fruit pods 3 norma
fruit spots 5 —
Leaf condition 2 abnormal
leaf spot size 3 —
yellow leaf spot halo 3 absent
leaf spot margins 3 —
shredding 2 absent
leaf malformation 2 absent
leaf mildew growth 3 absent
Stem condition 2 abnormal
stem lodging 2 yes
stem cankers 4 above soil line
canker lesion color 3 —
fruiting bodies on stems 2 present
external decay of stem 3 firm and dry
mycelium on stem 2 absent
internal discoloration 3 none
sclerotia 2 absent
Root condition 3 normal
Diagnosis diaporthe stem

—_
©

canker




11

13

CHAPTER 1 | WHAT’S IT ALL ABOUT?

the learning algorithm find rules that outperformed those of the expert collab-
orator, but the same expert was so impressed that he allegedly adopted the dis-
covered rules in place of his own!

Fielded applications

The examples that we opened with are speculative research projects, not pro-
duction systems. And the preceding illustrations are toy problems: they are
deliberately chosen to be small so that we can use them to work through algo-
rithms later in the book. Where’s the beef? Here are some applications of
machine learning that have actually been put into use.

Being fielded applications, the illustrations that follow tend to stress the use
of learning in performance situations, in which the emphasis is on ability to
perform well on new examples. This book also describes the use of learning
systems to gain knowledge from decision structures that are inferred from the
data. We believe that this is as important—probably even more important in
the long run—a use of the technology as merely making high-performance pre-
dictions. Still, it will tend to be underrepresented in fielded applications because
when learning techniques are used to gain insight, the result is not normally a
system that is put to work as an application in its own right. Nevertheless, in
three of the examples that follow, the fact that the decision structure is com-
prehensible is a key feature in the successful adoption of the application.

Decisions involving judgment

When you apply for a loan, you have to fill out a questionnaire that asks for
relevant financial and personal information. This information is used by the
loan company as the basis for its decision as to whether to lend you money. Such
decisions are typically made in two stages. First, statistical methods are used to
determine clear “accept” and “reject” cases. The remaining borderline cases are
more difficult and call for human judgment. For example, one loan company
uses a statistical decision procedure to calculate a numeric parameter based on
the information supplied in the questionnaire. Applicants are accepted if this
parameter exceeds a preset threshold and rejected if it falls below a second
threshold. This accounts for 90% of cases, and the remaining 10% are referred
to loan officers for a decision. On examining historical data on whether appli-
cants did indeed repay their loans, however, it turned out that half of the bor-
derline applicants who were granted loans actually defaulted. Although it would
be tempting simply to deny credit to borderline customers, credit industry pro-
fessionals pointed out that if only their repayment future could be reliably deter-
mined it is precisely these customers whose business should be wooed; they tend
to be active customers of a credit institution because their finances remain in a



1.3 FIELDED APPLICATIONS 23

chronically volatile condition. A suitable compromise must be reached between
the viewpoint of a company accountant, who dislikes bad debt, and that of a
sales executive, who dislikes turning business away.

Enter machine learning. The input was 1000 training examples of borderline
cases for which a loan had been made that specified whether the borrower had
finally paid off or defaulted. For each training example, about 20 attributes were
extracted from the questionnaire, such as age, years with current employer, years
at current address, years with the bank, and other credit cards possessed. A
machine learning procedure was used to produce a small set of classification
rules that made correct predictions on two-thirds of the borderline cases in an
independently chosen test set. Not only did these rules improve the success rate
of the loan decisions, but the company also found them attractive because they
could be used to explain to applicants the reasons behind the decision. Although
the project was an exploratory one that took only a small development effort,
the loan company was apparently so pleased with the result that the rules were
put into use immediately.

Screening images

Since the early days of satellite technology, environmental scientists have been
trying to detect oil slicks from satellite images to give early warning of ecolog-
ical disasters and deter illegal dumping. Radar satellites provide an opportunity
for monitoring coastal waters day and night, regardless of weather conditions.
Oil slicks appear as dark regions in the image whose size and shape evolve
depending on weather and sea conditions. However, other look-alike dark
regions can be caused by local weather conditions such as high wind. Detecting
oil slicks is an expensive manual process requiring highly trained personnel who
assess each region in the image.

A hazard detection system has been developed to screen images for subse-
quent manual processing. Intended to be marketed worldwide to a wide variety
of users—government agencies and companies—with different objectives,
applications, and geographic areas, it needs to be highly customizable to indi-
vidual circumstances. Machine learning allows the system to be trained on
examples of spills and nonspills supplied by the user and lets the user control
the tradeoff between undetected spills and false alarms. Unlike other machine
learning applications, which generate a classifier that is then deployed in the
field, here it is the learning method itself that will be deployed.

The input is a set of raw pixel images from a radar satellite, and the output
is a much smaller set of images with putative oil slicks marked by a colored
border. First, standard image processing operations are applied to normalize the
image. Then, suspicious dark regions are identified. Several dozen attributes
are extracted from each region, characterizing its size, shape, area, intensity,



24

CHAPTER 1 | WHAT’S IT ALL ABOUT?

sharpness and jaggedness of the boundaries, proximity to other regions, and
information about the background in the vicinity of the region. Finally, stan-
dard learning techniques are applied to the resulting attribute vectors.

Several interesting problems were encountered. One is the scarcity of train-
ing data. Oil slicks are (fortunately) very rare, and manual classification is
extremely costly. Another is the unbalanced nature of the problem: of the many
dark regions in the training data, only a very small fraction are actual oil slicks.
A third is that the examples group naturally into batches, with regions drawn
from each image forming a single batch, and background characteristics vary
from one batch to another. Finally, the performance task is to serve as a filter,
and the user must be provided with a convenient means of varying the false-
alarm rate.

Load forecasting

In the electricity supply industry, it is important to determine future demand
for power as far in advance as possible. If accurate estimates can be made for
the maximum and minimum load for each hour, day, month, season, and year,
utility companies can make significant economies in areas such as setting the
operating reserve, maintenance scheduling, and fuel inventory management.

An automated load forecasting assistant has been operating at a major utility
supplier over the past decade to generate hourly forecasts 2 days in advance. The
first step was to use data collected over the previous 15 years to create a sophis-
ticated load model manually. This model had three components: base load for
the year, load periodicity over the year, and the effect of holidays. To normalize
for the base load, the data for each previous year was standardized by subtract-
ing the average load for that year from each hourly reading and dividing by the
standard deviation over the year. Electric load shows periodicity at three fun-
damental frequencies: diurnal, where usage has an early morning minimum and
midday and afternoon maxima; weekly, where demand is lower at weekends;
and seasonal, where increased demand during winter and summer for heating
and cooling, respectively, creates a yearly cycle. Major holidays such as Thanks-
giving, Christmas, and New Year’s Day show significant variation from the
normal load and are each modeled separately by averaging hourly loads for that
day over the past 15 years. Minor official holidays, such as Columbus Day, are
lumped together as school holidays and treated as an offset to the normal
diurnal pattern. All of these effects are incorporated by reconstructing a year’s
load as a sequence of typical days, fitting the holidays in their correct position,
and denormalizing the load to account for overall growth.

Thus far, the load model is a static one, constructed manually from histori-
cal data, and implicitly assumes “normal” climatic conditions over the year. The
final step was to take weather conditions into account using a technique that



1.3 FIELDED APPLICATIONS 25

locates the previous day most similar to the current circumstances and uses the
historical information from that day as a predictor. In this case the prediction
is treated as an additive correction to the static load model. To guard against
outliers, the eight most similar days are located and their additive corrections
averaged. A database was constructed of temperature, humidity, wind speed,
and cloud cover at three local weather centers for each hour of the 15-year
historical record, along with the difference between the actual load and that
predicted by the static model. A linear regression analysis was performed to
determine the relative effects of these parameters on load, and the coefficients
were used to weight the distance function used to locate the most similar days.

The resulting system yielded the same performance as trained human fore-
casters but was far quicker—taking seconds rather than hours to generate a daily
forecast. Human operators can analyze the forecast’s sensitivity to simulated
changes in weather and bring up for examination the “most similar” days that
the system used for weather adjustment.

Diagnosis

Diagnosis is one of the principal application areas of expert systems. Although
the handcrafted rules used in expert systems often perform well, machine learn-
ing can be useful in situations in which producing rules manually is too labor
intensive.

Preventative maintenance of electromechanical devices such as motors and
generators can forestall failures that disrupt industrial processes. Technicians
regularly inspect each device, measuring vibrations at various points to deter-
mine whether the device needs servicing. Typical faults include shaft misalign-
ment, mechanical loosening, faulty bearings, and unbalanced pumps. A
particular chemical plant uses more than 1000 different devices, ranging from
small pumps to very large turbo-alternators, which until recently were diag-
nosed by a human expert with 20 years of experience. Faults are identified by
measuring vibrations at different places on the device’s mounting and using
Fourier analysis to check the energy present in three different directions at each
harmonic of the basic rotation speed. This information, which is very noisy
because of limitations in the measurement and recording procedure, is studied
by the expert to arrive at a diagnosis. Although handcrafted expert system rules
had been developed for some situations, the elicitation process would have to
be repeated several times for different types of machinery; so a learning
approach was investigated.

Six hundred faults, each comprising a set of measurements along with the
expert’s diagnosis, were available, representing 20 years of experience in the
field. About half were unsatisfactory for various reasons and had to be discarded;
the remainder were used as training examples. The goal was not to determine



26

CHAPTER 1 | WHAT’S IT ALL ABOUT?

whether or not a fault existed, but to diagnose the kind of fault, given that one
was there. Thus there was no need to include fault-free cases in the training set.
The measured attributes were rather low level and had to be augmented by inter-
mediate concepts, that is, functions of basic attributes, which were defined in
consultation with the expert and embodied some causal domain knowledge.
The derived attributes were run through an induction algorithm to produce a
set of diagnostic rules. Initially, the expert was not satisfied with the rules
because he could not relate them to his own knowledge and experience. For
him, mere statistical evidence was not, by itself, an adequate explanation.
Further background knowledge had to be used before satisfactory rules were
generated. Although the resulting rules were quite complex, the expert liked
them because he could justify them in light of his mechanical knowledge. He
was pleased that a third of the rules coincided with ones he used himself and
was delighted to gain new insight from some of the others.

Performance tests indicated that the learned rules were slightly superior to
the handcrafted ones that had previously been elicited from the expert, and this
result was confirmed by subsequent use in the chemical factory. It is interesting
to note, however, that the system was put into use not because of its good per-
formance but because the domain expert approved of the rules that had been
learned.

Marketing and sales

Some of the most active applications of data mining have been in the area of
marketing and sales. These are domains in which companies possess massive
volumes of precisely recorded data, data which—it has only recently been real-
ized—is potentially extremely valuable. In these applications, predictions them-
selves are the chief interest: the structure of how decisions are made is often
completely irrelevant.

We have already mentioned the problem of fickle customer loyalty and the
challenge of detecting customers who are likely to defect so that they can be
wooed back into the fold by giving them special treatment. Banks were early
adopters of data mining technology because of their successes in the use of
machine learning for credit assessment. Data mining is now being used to
reduce customer attrition by detecting changes in individual banking patterns
that may herald a change of bank or even life changes—such as a move to
another city—that could result in a different bank being chosen. It may reveal,
for example, a group of customers with above-average attrition rate who do
most of their banking by phone after hours when telephone response is slow.
Data mining may determine groups for whom new services are appropriate,
such as a cluster of profitable, reliable customers who rarely get cash advances
from their credit card except in November and December, when they are pre-



1.3 FIELDED APPLICATIONS 27

pared to pay exorbitant interest rates to see them through the holiday season. In
another domain, cellular phone companies fight churn by detecting patterns of
behavior that could benefit from new services, and then advertise such services
to retain their customer base. Incentives provided specifically to retain existing
customers can be expensive, and successful data mining allows them to be pre-
cisely targeted to those customers where they are likely to yield maximum benefit.

Market basket analysis is the use of association techniques to find groups of
items that tend to occur together in transactions, typically supermarket check-
out data. For many retailers this is the only source of sales information that is
available for data mining. For example, automated analysis of checkout data
may uncover the fact that customers who buy beer also buy chips, a discovery
that could be significant from the supermarket operator’s point of view
(although rather an obvious one that probably does not need a data mining
exercise to discover). Or it may come up with the fact that on Thursdays, cus-
tomers often purchase diapers and beer together, an initially surprising result
that, on reflection, makes some sense as young parents stock up for a weekend
at home. Such information could be used for many purposes: planning store
layouts, limiting special discounts to just one of a set of items that tend to be
purchased together, offering coupons for a matching product when one of them
is sold alone, and so on. There is enormous added value in being able to iden-
tify individual customer’s sales histories. In fact, this value is leading to a pro-
liferation of discount cards or “loyalty” cards that allow retailers to identify
individual customers whenever they make a purchase; the personal data that
results will be far more valuable than the cash value of the discount. Identifica-
tion of individual customers not only allows historical analysis of purchasing
patterns but also permits precisely targeted special offers to be mailed out to
prospective customers.

This brings us to direct marketing, another popular domain for data mining.
Promotional offers are expensive and have an extremely low—but highly
profitable—response rate. Any technique that allows a promotional mailout to
be more tightly focused, achieving the same or nearly the same response from
a much smaller sample, is valuable. Commercially available databases contain-
ing demographic information based on ZIP codes that characterize the associ-
ated neighborhood can be correlated with information on existing customers
to find a socioeconomic model that predicts what kind of people will turn out
to be actual customers. This model can then be used on information gained in
response to an initial mailout, where people send back a response card or call
an 800 number for more information, to predict likely future customers. Direct
mail companies have the advantage over shopping-mall retailers of having com-
plete purchasing histories for each individual customer and can use data mining
to determine those likely to respond to special offers. Targeted campaigns are
cheaper than mass-marketed campaigns because companies save money by



28

CHAPTER 1 | WHAT’S IT ALL ABOUT?

sending offers only to those likely to want the product. Machine learning can
help companies to find the targets.

Other applications

There are countless other applications of machine learning. We briefly mention
a few more areas to illustrate the breadth of what has been done.

Sophisticated manufacturing processes often involve tweaking control
parameters. Separating crude oil from natural gas is an essential prerequisite to
oil refinement, and controlling the separation process is a tricky job. British
Petroleum used machine learning to create rules for setting the parameters. This
now takes just 10 minutes, whereas previously human experts took more than
a day. Westinghouse faced problems in their process for manufacturing nuclear
fuel pellets and used machine learning to create rules to control the process.
This was reported to save them more than $10 million per year (in 1984). The
Tennessee printing company R.R. Donnelly applied the same idea to control
rotogravure printing presses to reduce artifacts caused by inappropriate
parameter settings, reducing the number of artifacts from more than 500 each
year to less than 30.

In the realm of customer support and service, we have already described adju-
dicating loans, and marketing and sales applications. Another example arises
when a customer reports a telephone problem and the company must decide
what kind of technician to assign to the job. An expert system developed by Bell
Atlantic in 1991 to make this decision was replaced in 1999 by a set of rules
learned using machine learning, which saved more than $10 million per year by
making fewer incorrect decisions.

There are many scientific applications. In biology, machine learning is used
to help identify the thousands of genes within each new genome. In biomedi-
cine, it is used to predict drug activity by analyzing not just the chemical
properties of drugs but also their three-dimensional structure. This accelerates
drug discovery and reduces its cost. In astronomy, machine learning has
been used to develop a fully automatic cataloguing system for celestial objects
that are too faint to be seen by visual inspection. In chemistry, it has been used
to predict the structure of certain organic compounds from magnetic resonance
spectra. In all these applications, machine learning techniques have attained
levels of performance—or should we say skill?—that rival or surpass human
experts.

Automation is especially welcome in situations involving continuous moni-
toring, a job that is time consuming and exceptionally tedious for humans. Eco-
logical applications include the oil spill monitoring described earlier. Some
other applications are rather less consequential—for example, machine learn-
ing is being used to predict preferences for TV programs based on past choices



14

1.4  MACHINE LEARNING AND STATISTICS 29

and advise viewers about the available channels. Still others may save lives.
Intensive care patients may be monitored to detect changes in variables that
cannot be explained by circadian rhythm, medication, and so on, raising
an alarm when appropriate. Finally, in a world that relies on vulnerable net-
worked computer systems and is increasingly concerned about cybersecurity,
machine learning is used to detect intrusion by recognizing unusual patterns of
operation.

Machine learning and statistics

What’s the difference between machine learning and statistics? Cynics, looking
wryly at the explosion of commercial interest (and hype) in this area, equate
data mining to statistics plus marketing. In truth, you should not look for a
dividing line between machine learning and statistics because there is a contin-
uum—and a multidimensional one at that—of data analysis techniques. Some
derive from the skills taught in standard statistics courses, and others are more
closely associated with the kind of machine learning that has arisen out of com-
puter science. Historically, the two sides have had rather different traditions. If
forced to point to a single difference of emphasis, it might be that statistics has
been more concerned with testing hypotheses, whereas machine learning has
been more concerned with formulating the process of generalization as a search
through possible hypotheses. But this is a gross oversimplification: statistics is
far more than hypothesis testing, and many machine learning techniques do not
involve any searching at all.

In the past, very similar methods have developed in parallel in machine learn-
ing and statistics. One is decision tree induction. Four statisticians (Breiman et
al. 1984) published a book on Classification and regression trees in the mid-1980s,
and throughout the 1970s and early 1980s a prominent machine learning
researcher, J. Ross Quinlan, was developing a system for inferring classification
trees from examples. These two independent projects produced quite similar
methods for generating trees from examples, and the researchers only became
aware of one another’s work much later. A second area in which similar methods
have arisen involves the use of nearest-neighbor methods for classification.
These are standard statistical techniques that have been extensively adapted by
machine learning researchers, both to improve classification performance and
to make the procedure more efficient computationally. We will examine both
decision tree induction and nearest-neighbor methods in Chapter 4.

But now the two perspectives have converged. The techniques we will
examine in this book incorporate a great deal of statistical thinking. From the
beginning, when constructing and refining the initial example set, standard sta-
tistical methods apply: visualization of data, selection of attributes, discarding



30

15

CHAPTER 1 | WHAT’S IT ALL ABOUT?

outliers, and so on. Most learning algorithms use statistical tests when con-
structing rules or trees and for correcting models that are “overfitted” in that
they depend too strongly on the details of the particular examples used to
produce them (we have already seen an example of this in the two decision trees
of Figure 1.3 for the labor negotiations problem). Statistical tests are used to
validate machine learning models and to evaluate machine learning algorithms.
In our study of practical techniques for data mining, we will learn a great deal
about statistics.

Generalization as search

One way of visualizing the problem of learning—and one that distinguishes it
from statistical approaches—is to imagine a search through a space of possible
concept descriptions for one that fits the data. Although the idea of generaliza-
tion as search is a powerful conceptual tool for thinking about machine learn-
ing, it is not essential for understanding the practical methods described in this
book. That is why this section is marked optional, as indicated by the gray bar
in the margin.

Suppose, for definiteness, that concepts—the result of learning—are
expressed as rules such as the ones given for the weather problem in Section 1.2
(although other concept description languages would do just as well). Suppose
that we list all possible sets of rules and then look for ones that satisfy a given
set of examples. A big job? Yes. An infinite job? At first glance it seems so because
there is no limit to the number of rules there might be. But actually the number
of possible rule sets is finite. Note first that each individual rule is no greater
than a fixed maximum size, with at most one term for each attribute: for the
weather data of Table 1.2 this involves four terms in all. Because the number of
possible rules is finite, the number of possible rule sefs is finite, too, although
extremely large. However, we’'d hardly be interested in sets that contained a very
large number of rules. In fact, we’'d hardly be interested in sets that had more
rules than there are examples because it is difficult to imagine needing more
than one rule for each example. So if we were to restrict consideration to rule
sets smaller than that, the problem would be substantially reduced, although
still very large.

The threat of an infinite number of possible concept descriptions seems more
serious for the second version of the weather problem in Table 1.3 because these
rules contain numbers. If they are real numbers, you can’t enumerate them, even
in principle. However, on reflection the problem again disappears because the
numbers really just represent breakpoints in the numeric values that appear in
the examples. For instance, consider the temperature attribute in Table 1.3. Tt
involves the numbers 64, 65, 68, 69, 70, 71, 72, 75, 80, 81, 83, and 85—12 dif-



1.5 GENERALIZATION AS SEARCH 31

ferent numbers. There are 13 possible places in which we might want to put a
breakpoint for a rule involving temperature. The problem isn’t infinite after all.

So the process of generalization can be regarded as a search through an enor-
mous, but finite, search space. In principle, the problem can be solved by enu-
merating descriptions and striking out those that do not fit the examples
presented. A positive example eliminates all descriptions that it does not match,
and a negative one eliminates those it does match. With each example the set
of remaining descriptions shrinks (or stays the same). If only one is left, it is the
target description—the target concept.

If several descriptions are left, they may still be used to classify unknown
objects. An unknown object that matches all remaining descriptions should be
classified as matching the target; if it fails to match any description it should be
classified as being outside the target concept. Only when it matches some
descriptions but not others is there ambiguity. In this case if the classification
of the unknown object were revealed, it would cause the set of remaining
descriptions to shrink because rule sets that classified the object the wrong way
would be rejected.

Enumerating the concept space

Regarding it as search is a good way of looking at the learning process. However,
the search space, although finite, is extremely big, and it is generally quite
impractical to enumerate all possible descriptions and then see which ones fit.
In the weather problem there are 4 X 4 X 3 x 3 x 2 = 288 possibilities for each
rule. There are four possibilities for the outlook attribute: sunny, overcast, rainy,
or it may not participate in the rule at all. Similarly, there are four for tempera-
ture, three for weather and humidity, and two for the class. If we restrict the rule
set to contain no more than 14 rules (because there are 14 examples in the train-
ing set), there are around 2.7 x 10** possible different rule sets. That’s a lot to
enumerate, especially for such a patently trivial problem.

Although there are ways of making the enumeration procedure more feasi-
ble, a serious problem remains: in practice, it is rare for the process to converge
on a unique acceptable description. Either many descriptions are still in the
running after the examples are processed or the descriptors are all eliminated.
The first case arises when the examples are not sufficiently comprehensive to
eliminate all possible descriptions except for the “correct” one. In practice,
people often want a single “best” description, and it is necessary to apply some
other criteria to select the best one from the set of remaining descriptions. The
second problem arises either because the description language is not expressive
enough to capture the actual concept or because of noise in the examples. If an
example comes in with the “wrong” classification because of an error in some
of the attribute values or in the class that is assigned to it, this will likely



i1

CHAPTER 1 | WHAT’S IT ALL ABOUT?

eliminate the correct description from the space. The result is that the set of
remaining descriptions becomes empty. This situation is very likely to happen
if the examples contain any noise at all, which inevitably they do except in
artificial situations.

Another way of looking at generalization as search is to imagine it not as a
process of enumerating descriptions and striking out those that don’t apply but
as a kind of hill-climbing in description space to find the description that best
matches the set of examples according to some prespecified matching criterion.
This is the way that most practical machine learning methods work. However,
except in the most trivial cases, it is impractical to search the whole space
exhaustively; most practical algorithms involve heuristic search and cannot
guarantee to find the optimal description.

Bias
Viewing generalization as a search in a space of possible concepts makes it clear
that the most important decisions in a machine learning system are as follows:

B The concept description language
B The order in which the space is searched
B The way that overfitting to the particular training data is avoided

These three properties are generally referred to as the bias of the search and are
called language bias, search bias, and overfitting-avoidance bias. You bias the
learning scheme by choosing a language in which to express concepts, by search-
ing in a particular way for an acceptable description, and by deciding when the
concept has become so complex that it needs to be simplified.

Language bias

The most important question for language bias is whether the concept descrip-
tion language is universal or whether it imposes constraints on what concepts can
be learned. If you consider the set of all possible examples, a concept is really just
a division of it into subsets. In the weather example, if you were to enumerate all
possible weather conditions, the play concept is a subset of possible weather con-
ditions. A “universal” language is one that is capable of expressing every possible
subset of examples. In practice, the set of possible examples is generally huge, and
in this respect our perspective is a theoretical, not a practical, one.

If the concept description language permits statements involving logical or,
that is, disjunctions, then any subset can be represented. If the description lan-
guage is rule based, disjunction can be achieved by using separate rules. For
example, one possible concept representation is just to enumerate the examples:

If outlook = overcast and temperature = hot and humidity = high
and windy = false then play = yes



1.5 GENERALIZATION AS SEARCH 33

If outlook = rainy and temperature = mild and humidity = high
and windy = false then play = vyes

If outlook = rainy and temperature = cool and humidity normal
and windy = false then play = vyes
If outlook = overcast and temperature = cool and humidity = normal

and windy = true then play = yes

If none of the above then play = no

This is not a particularly enlightening concept description: it simply records the
positive examples that have been observed and assumes that all the rest are neg-
ative. Each positive example is given its own rule, and the concept is the dis-
junction of the rules. Alternatively, you could imagine having individual rules
for each of the negative examples, too—an equally uninteresting concept. In
either case the concept description does not perform any generalization; it
simply records the original data.

On the other hand, if disjunction is not allowed, some possible concepts—
sets of examples—may not be able to be represented at all. In that case, a
machine learning scheme may simply be unable to achieve good performance.

Another kind of language bias is that obtained from knowledge of the par-
ticular domain being used. For example, it may be that some combinations of
attribute values can never happen. This would be the case if one attribute
implied another. We saw an example of this when considering the rules for the
soybean problem described on page 20. Then, it would be pointless to even con-
sider concepts that involved redundant or impossible combinations of attribute
values. Domain knowledge can be used to cut down the search space. Knowl-
edge is power: a little goes a long way, and even a small hint can reduce the
search space dramatically.

Search bias

In realistic data mining problems, there are many alternative concept descrip-
tions that fit the data, and the problem is to find the “best” one according to
some criterion—usually simplicity. We use the term fit in a statistical sense; we
seek the best description that fits the data reasonably well. Moreover, it is often
computationally infeasible to search the whole space and guarantee that the
description found really is the best. Consequently, the search procedure is
heuristic, and no guarantees can be made about the optimality of the final result.
This leaves plenty of room for bias: different search heuristics bias the search in
different ways.

For example, a learning algorithm might adopt a “greedy” search for rules by
trying to find the best rule at each stage and adding it in to the rule set. However,
it may be that the best pair of rules is not just the two rules that are individu-
ally found to be the best. Or when building a decision tree, a commitment to



34

CHAPTER 1 | WHAT’S IT ALL ABOUT?

split early on using a particular attribute might turn out later to be ill consid-
ered in light of how the tree develops below that node. To get around these prob-
lems, a beam search could be used in which irrevocable commitments are not
made but instead a set of several active alternatives—whose number is the beam
width—are pursued in parallel. This will complicate the learning algorithm
quite considerably but has the potential to avoid the myopia associated with a
greedy search. Of course, if the beam width is not large enough, myopia may
still occur. There are more complex search strategies that help to overcome this
problem.

A more general and higher-level kind of search bias concerns whether the
search is done by starting with a general description and refining it, or by
starting with a specific example and generalizing it. The former is called a
general-to-specific search bias; the latter a specific-to-general one. Many learning
algorithms adopt the former policy, starting with an empty decision tree, or a
very general rule, and specializing it to fit the examples. However, it is perfectly
possible to work in the other direction. Instance-based methods start with a
particular example and see how it can be generalized to cover nearby examples
in the same class.

Overfitting-avoidance bias

Overfitting-avoidance bias is often just another kind of search bias. But because
it addresses a rather special problem, we treat it separately. Recall the disjunc-
tion problem described previously. The problem is that if disjunction is allowed,
useless concept descriptions that merely summarize the data become possible,
whereas if it is prohibited, some concepts are unlearnable. To get around this
problem, it is common to search the concept space starting with the simplest
concept descriptions and proceeding to more complex ones: simplest-first
ordering. This biases the search toward simple concept descriptions.

Using a simplest-first search and stopping when a sufficiently complex
concept description is found is a good way of avoiding overfitting. It is some-
times called forward pruning or prepruning because complex descriptions are
pruned away before they are reached. The alternative, backward pruning or post-
pruning, is also viable. Here, we first find a description that fits the data well and
then prune it back to a simpler description that also fits the data. This is not as
redundant as it sounds: often the only way to arrive at a simple theory is to find
a complex one and then simplify it. Forward and backward pruning are both a
kind of overfitting-avoidance bias.

In summary, although generalization as search is a nice way to think about
the learning problem, bias is the only way to make it feasible in practice. Dif-
ferent learning algorithms correspond to different concept description spaces
searched with different biases. This is what makes it interesting: different



1.6

1.6 DATA MINING AND ETHICS 35

description languages and biases serve some problems well and other problems
badly. There is no universal “best” learning method—as every teacher knows!

Data mining and ethics

The use of data—particularly data about people—for data mining has serious
ethical implications, and practitioners of data mining techniques must act
responsibly by making themselves aware of the ethical issues that surround their
particular application.

When applied to people, data mining is frequently used to discriminate—
who gets the loan, who gets the special offer, and so on. Certain kinds of
discrimination—racial, sexual, religious, and so on—are not only unethical
but also illegal. However, the situation is complex: everything depends on the
application. Using sexual and racial information for medical diagnosis is
certainly ethical, but using the same information when mining loan payment
behavior is not. Even when sensitive information is discarded, there is a risk
that models will be built that rely on variables that can be shown to substitute
for racial or sexual characteristics. For example, people frequently live in
areas that are associated with particular ethnic identities, so using an area
code in a data mining study runs the risk of building models that are based on
race—even though racial information has been explicitly excluded from the
data.

It is widely accepted that before people make a decision to provide personal
information they need to know how it will be used and what it will be used for,
what steps will be taken to protect its confidentiality and integrity, what the con-
sequences of supplying or withholding the information are, and any rights of
redress they may have. Whenever such information is collected, individuals
should be told these things—not in legalistic small print but straightforwardly
in plain language they can understand.

The potential use of data mining techniques means that the ways in which a
repository of data can be used may stretch far beyond what was conceived when
the data was originally collected. This creates a serious problem: it is necessary
to determine the conditions under which the data was collected and for what
purposes it may be used. Does the ownership of data bestow the right to use it
in ways other than those purported when it was originally recorded? Clearly in
the case of explicitly collected personal data it does not. But in general the
situation is complex.

Surprising things emerge from data mining. For example, it has been
reported that one of the leading consumer groups in France has found that
people with red cars are more likely to default on their car loans. What is the



hli

CHAPTER 1 | WHAT’S IT ALL ABOUT?

status of such a “discovery”? What information is it based on? Under what con-
ditions was that information collected? In what ways is it ethical to use it?
Clearly, insurance companies are in the business of discriminating among
people based on stereotypes—young males pay heavily for automobile insur-
ance—but such stereotypes are not based solely on statistical correlations; they
also involve common-sense knowledge about the world. Whether the preceding
finding says something about the kind of person who chooses a red car, or
whether it should be discarded as an irrelevancy, is a matter for human
judgment based on knowledge of the world rather than on purely statistical
criteria.

When presented with data, you need to ask who is permitted to have access
to it, for what purpose it was collected, and what kind of conclusions is it legit-
imate to draw from it. The ethical dimension raises tough questions for those
involved in practical data mining. It is necessary to consider the norms of the
community that is used to dealing with the kind of data involved, standards that
may have evolved over decades or centuries but ones that may not be known to
the information specialist. For example, did you know that in the library com-
munity, it is taken for granted that the privacy of readers is a right that is
jealously protected? If you call your university library and ask who has such-
and-such a textbook out on loan, they will not tell you. This prevents a student
from being subjected to pressure from an irate professor to yield access to a book
that she desperately needs for her latest grant application. It also prohibits
enquiry into the dubious recreational reading tastes of the university ethics
committee chairman. Those who build, say, digital libraries may not be aware
of these sensitivities and might incorporate data mining systems that analyze
and compare individuals’ reading habits to recommend new books—perhaps
even selling the results to publishers!

In addition to community standards for the use of data, logical and scientific
standards must be adhered to when drawing conclusions from it. If you do come
up with conclusions (such as red car owners being greater credit risks), you need
to attach caveats to them and back them up with arguments other than purely
statistical ones. The point is that data mining is just a tool in the whole process:
it is people who take the results, along with other knowledge, and decide what
action to apply.

Data mining prompts another question, which is really a political one: to
what use are society’s resources being put? We mentioned previously the appli-
cation of data mining to basket analysis, where supermarket checkout records
are analyzed to detect associations among items that people purchase. What use
should be made of the resulting information? Should the supermarket manager
place the beer and chips together, to make it easier for shoppers, or farther apart,
making it less convenient for them, maximizing their time in the store, and
therefore increasing their likelihood of being drawn into unplanned further



1.7

1.7 FURTHER READING 37

purchases? Should the manager move the most expensive, most profitable
diapers near the beer, increasing sales to harried fathers of a high-margin item
and add further luxury baby products nearby?

Of course, anyone who uses advanced technologies should consider the
wisdom of what they are doing. If data is characterized as recorded facts, then
information is the set of patterns, or expectations, that underlie the data. You
could go on to define knowledge as the accumulation of your set of expectations
and wisdom as the value attached to knowledge. Although we will not pursue it
further here, this issue is worth pondering.

As we saw at the very beginning of this chapter, the techniques described in
this book may be called upon to help make some of the most profound and
intimate decisions that life presents. Data mining is a technology that we need
to take seriously.

Further reading

To avoid breaking up the flow of the main text, all references are collected in a
section at the end of each chapter. This first Further reading section describes
papers, books, and other resources relevant to the material covered in Chapter
1. The human in vitro fertilization research mentioned in the opening to this
chapter was undertaken by the Oxford University Computing Laboratory,
and the research on cow culling was performed in the Computer Science
Department at the University of Waikato, New Zealand.

The example of the weather problem is from Quinlan (1986) and has been
widely used to explain machine learning schemes. The corpus of example prob-
lems mentioned in the introduction to Section 1.2 is available from Blake et al.
(1998). The contact lens example is from Cendrowska (1998), who introduced
the PRISM rule-learning algorithm that we will encounter in Chapter 4. The iris
dataset was described in a classic early paper on statistical inference (Fisher
1936). The labor negotiations data is from the Collective bargaining review, a
publication of Labour Canada issued by the Industrial Relations Information
Service (BLI 1988), and the soybean problem was first described by Michalski
and Chilausky (1980).

Some of the applications in Section 1.3 are covered in an excellent paper that
gives plenty of other applications of machine learning and rule induction
(Langley and Simon 1995); another source of fielded applications is a special
issue of the Machine Learning Journal (Kohavi and Provost 1998). The loan
company application is described in more detail by Michie (1989), the oil slick
detector is from Kubat et al. (1998), the electric load forecasting work is by
Jabbour et al. (1988), and the application to preventative maintenance of
electromechanical devices is from Saitta and Neri (1998). Fuller descriptions



38

CHAPTER 1 | WHAT’S IT ALL ABOUT?

of some of the other projects mentioned in Section 1.3 (including the figures
of dollars saved and related literature references) appear at the Web sites of the
Alberta Ingenuity Centre for Machine Learning and MLnet, a European
network for machine learning,

The book Classification and regression trees mentioned in Section 1.4 is by
Breiman et al. (1984), and the independently derived but similar scheme of
Quinlan was described in a series of papers that eventually led to a book
(Quinlan 1993).

The first book on data mining appeared in 1991 (Piatetsky-Shapiro and
Frawley 1991)—a collection of papers presented at a workshop on knowledge
discovery in databases in the late 1980s. Another book from the same stable has
appeared since (Fayyad et al. 1996) from a 1994 workshop. There followed a
rash of business-oriented books on data mining, focusing mainly on practical
aspects of how it can be put into practice with only rather superficial descrip-
tions of the technology that underlies the methods used. They are valuable
sources of applications and inspiration. For example, Adriaans and Zantige
(1996) from Syllogic, a European systems and database consultancy, provide an
early introduction to data mining. Berry and Linoff (1997), from a Pennsylva-
nia-based company specializing in data warehousing and data mining, give an
excellent and example-studded review of data mining techniques for market-
ing, sales, and customer support. Cabena et al. (1998), written by people from
five international IBM laboratories, overview the data mining process with
many examples of real-world applications. Dhar and Stein (1997) give a busi-
ness perspective on data mining and include broad-brush, popularized reviews
of many of the technologies involved. Groth (1998), working for a provider of
data mining software, gives a brief introduction to data mining and then a
fairly extensive review of data mining software products; the book includes a
CD-ROM containing a demo version of his company’s product. Weiss and
Indurkhya (1998) look at a wide variety of statistical techniques for making
predictions from what they call “big data.” Han and Kamber (2001) cover data
mining from a database perspective, focusing on the discovery of knowledge in
large corporate databases. Finally, Hand et al. (2001) produced an interdiscipli-
nary book on data mining from an international group of authors who are well
respected in the field.

Books on machine learning, on the other hand, tend to be academic texts
suited for use in university courses rather than practical guides. Mitchell (1997)
wrote an excellent book that covers many techniques of machine learning,
including some—notably genetic algorithms and reinforcement learning—that
are not covered here. Langley (1996) offers another good text. Although the pre-
viously mentioned book by Quinlan (1993) concentrates on a particular learn-
ing algorithm, C4.5, which we will cover in detail in Chapters 4 and 6, it is a
good introduction to some of the problems and techniques of machine learn-



1.7 FURTHER READING 39

ing. An excellent book on machine learning from a statistical perspective is from
Hastie et al. (2001). This is quite a theoretically oriented work, and is beauti-
fully produced with apt and telling illustrations.

Pattern recognition is a topic that is closely related to machine learning, and
many of the same techniques apply. Duda et al. (2001) offer the second edition
of a classic and successful book on pattern recognition (Duda and Hart 1973).
Ripley (1996) and Bishop (1995) describe the use of neural networks for pattern
recognition. Data mining with neural networks is the subject of a book by Bigus
(1996) of IBM, which features the IBM Neural Network Utility Product that he
developed.

There is a great deal of current interest in support vector machines, which
we return to in Chapter 6. Cristianini and Shawe-Taylor (2000) give a nice intro-
duction, and a follow-up work generalizes this to cover additional algorithms,
kernels, and solutions with applications to pattern discovery problems in fields
such as bioinformatics, text analysis, and image analysis (Shawe-Taylor and
Cristianini 2004). Scholkopf and Smola (2002) provide a comprehensive intro-
duction to support vector machines and related kernel methods by two young
researchers who did their PhD research in this rapidly developing area.






oncepts, Instances, and Attributes

Before delving into the question of how machine learning methods operate, we
begin by looking at the different forms the input might take and, in the next
chapter, the different kinds of output that might be produced. With any soft-
ware system, understanding what the inputs and outputs are is far more impor-
tant than knowing what goes on in between, and machine learning is no
exception.

The input takes the form of concepts, instances, and attributes. We call the
thing that is to be learned a concept description. The idea of a concept, like
the very idea of learning in the first place, is hard to pin down precisely, and
we won't spend time philosophizing about just what it is and isn’t. In a
sense, what we are trying to find—the result of the learning process—is a
description of the concept that is intelligible in that it can be understood, dis-
cussed, and disputed, and operational in that it can be applied to actual exam-
ples. The next section explains some distinctions among different kinds of
learning problems, distinctions that are very concrete and very important in
practical data mining.

4



§2

2.1

CHAPTER 2 | INPUT: CONCEPTS, INSTANCES, AND ATTRIBUTES

The information that the learner is given takes the form of a set of instances.
In the illustrations in Chapter 1, each instance was an individual, independent
example of the concept to be learned. Of course there are many things you might
like to learn for which the raw data cannot be expressed as individual, inde-
pendent instances. Perhaps background knowledge should be taken into
account as part of the input. Perhaps the raw data is an agglomerated mass that
cannot be fragmented into individual instances. Perhaps it is a single sequence,
say, a time sequence, that cannot meaningfully be cut into pieces. However, this
book is about simple, practical methods of data mining, and we focus on
situations in which the information can be supplied in the form of individual
examples.

Each instance is characterized by the values of attributes that measure dif-
ferent aspects of the instance. There are many different types of attributes,
although typical data mining methods deal only with numeric and nominal, or
categorical, ones.

Finally, we examine the question of preparing input for data mining and
introduce a simple format—the one that is used by the Java code that accom-
panies this book—for representing the input information as a text file.

What's a concept?

Four basically different styles of learning appear in data mining applications. In
classification learning, the learning scheme is presented with a set of classified
examples from which it is expected to learn a way of classifying unseen exam-
ples. In association learning, any association among features is sought, not just
ones that predict a particular class value. In clustering, groups of examples that
belong together are sought. In numeric prediction, the outcome to be predicted
is not a discrete class but a numeric quantity. Regardless of the type of learning
involved, we call the thing to be learned the concept and the output produced
by a learning scheme the concept description.

Most of the examples in Chapter 1 are classification problems. The weather
data (Tables 1.2 and 1.3) presents a set of days together with a decision for each
as to whether to play the game or not. The problem is to learn how to classify
new days as play or don’t play. Given the contact lens data (Table 1.1), the
problem is to learn how to decide on a lens recommendation for a new patient—
or more precisely, since every possible combination of attributes is present in
the data, the problem is to learn a way of summarizing the given data. For the
irises (Table 1.4), the problem is to learn how to decide whether a new iris flower
is setosa, versicolor, or virginica, given its sepal length and width and petal length
and width. For the labor negotiations data (Table 1.6), the problem is to decide
whether a new contract is acceptable or not, on the basis of its duration; wage



2.1  WHAT’S A CONCEPT? 43

increase in the first, second, and third years; cost of living adjustment; and so
forth.

Classification learning is sometimes called supervised because, in a sense, the
method operates under supervision by being provided with the actual outcome
for each of the training examples—the play or don’t play judgment, the lens rec-
ommendation, the type of iris, the acceptability of the labor contract. This
outcome is called the class of the example. The success of classification learning
can be judged by trying out the concept description that is learned on an inde-
pendent set of test data for which the true classifications are known but not
made available to the machine. The success rate on test data gives an objective
measure of how well the concept has been learned. In many practical data
mining applications, success is measured more subjectively in terms of how
acceptable the learned description—such as the rules or the decision tree—are
to a human user.

Most of the examples in Chapter 1 can be used equally well for association
learning, in which there is no specified class. Here, the problem is to discover
any structure in the data that is “interesting.” Some association rules for the
weather data were given in Section 1.2. Association rules differ from classifica-
tion rules in two ways: they can “predict” any attribute, not just the class, and
they can predict more than one attribute’s value at a time. Because of this there
are far more association rules than classification rules, and the challenge is to
avoid being swamped by them. For this reason, association rules are often
limited to those that apply to a certain minimum number of examples—say
80% of the dataset—and have greater than a certain minimum accuracy level—
say 95% accurate. Even then, there are usually lots of them, and they have to be
examined manually to determine whether they are meaningful or not. Associ-
ation rules usually involve only nonnumeric attributes: thus you wouldn’t nor-
mally look for association rules in the iris dataset.

When there is no specified class, clustering is used to group items that seem
to fall naturally together. Imagine a version of the iris data in which the type of
iris is omitted, such as in Table 2.1. Then it is likely that the 150 instances fall
into natural clusters corresponding to the three iris types. The challenge is to
find these clusters and assign the instances to them—and to be able to assign
new instances to the clusters as well. It may be that one or more of the iris types
splits naturally into subtypes, in which case the data will exhibit more than three
natural clusters. The success of clustering is often measured subjectively in terms
of how useful the result appears to be to a human user. It may be followed by a
second step of classification learning in which rules are learned that give an
intelligible description of how new instances should be placed into the clusters.

Numeric prediction is a variant of classification learning in which the
outcome is a numeric value rather than a category. The CPU performance
problem is one example. Another, shown in Table 2.2, is a version of the weather



CHAPTER 2 | INPUT: CONCEPTS, INSTANCES, AND ATTRIBUTES

Table 2.1 Iris data as a clustering problem.
Sepal length Sepal width Petal length Petal width

(cm) (cm) (cm) (cm)
1 5.1 35 14 0.2
2 49 3.0 1.4 0.2
3 47 3.2 1.3 0.2
4 46 3.1 15 0.2
5 5.0 3.6 1.4 0.2
51 7.0 3.2 4.7 1.4
52 6.4 3.2 4.5 1.5
53 6.9 3.1 49 15
54 5.5 2.3 4.0 1.3
55 6.5 2.8 4.6 15
101 6.3 3.3 6.0 2.5
102 5.8 2.7 5.1 1.9
103 7.1 3.0 5.9 2.1
104 6.3 29 5.6 1.8
105 6.5 3.0 5.8 2.2

Table 2.2 Weather data with a numeric class.

Outlook Temperature Humidity Windy Play time (min.)
sunny 85 85 false 5
sunny 80 90 true 0
overcast 83 86 false 55
rainy 70 96 false 40
rainy 68 80 false 65
rainy 65 70 true 45
overcast 64 65 true 60
sunny 72 95 false 0
sunny 69 70 false 70
rainy 75 80 false 45
sunny 75 70 true 50
overcast 72 90 true 55
overcast 81 75 false 75

rainy n 91 true 10




22

2.2 WHAT’S IN AN EXAMPLE? 45

data in which what is to be predicted is not play or don’t play but rather is the
time (in minutes) to play. With numeric prediction problems, as with other
machine learning situations, the predicted value for new instances is often of
less interest than the structure of the description that is learned, expressed in
terms of what the important attributes are and how they relate to the numeric
outcome.

What's in an example?

The input to a machine learning scheme is a set of instances. These instances
are the things that are to be classified, associated, or clustered. Although
until now we have called them examples, henceforth we will use the more spe-
cific term instances to refer to the input. Each instance is an individual, inde-
pendent example of the concept to be learned. In addition, each one is
characterized by the values of a set of predetermined attributes. This was the
case in all the sample datasets described in the last chapter (the weather, contact
lens, iris, and labor negotiations problems). Each dataset is represented as a
matrix of instances versus attributes, which in database terms is a single rela-
tion, or a flat file.

Expressing the input data as a set of independent instances is by far the most
common situation for practical data mining. However, it is a rather restrictive
way of formulating problems, and it is worth spending some time reviewing
why. Problems often involve relationships between objects rather than separate,
independent instances. Suppose, to take a specific situation, a family tree is
given, and we want to learn the concept sister. Imagine your own family tree,
with your relatives (and their genders) placed at the nodes. This tree is the input
to the learning process, along with a list of pairs of people and an indication of
whether they are sisters or not.

Figure 2.1 shows part of a family tree, below which are two tables that each
define sisterhood in a slightly different way. A yes in the third column of the
tables means that the person in the second column is a sister of the person in
the first column (that’s just an arbitrary decision we’ve made in setting up this
example).

The first thing to notice is that there are a lot of nos in the third column of
the table on the left—because there are 12 people and 12 x 12 = 144 pairs of
people in all, and most pairs of people aren’t sisters. The table on the right, which
gives the same information, records only the positive instances and assumes that
all others are negative. The idea of specifying only positive examples and adopt-
ing a standing assumption that the rest are negative is called the closed world
assumption. It is frequently assumed in theoretical studies; however, it is not of



4%

CHAPTER 2 | INPUT: CONCEPTS, INSTANCES, AND ATTRIBUTES

Peter = Peggy Grace = Ray
M F F M
Steven Graham Pam = lan Pippa Brian
M M F M F M
Anna Nikki
F F

first second sister first second sister
person person of? person person of?
Peter Peggy no Steven Pam yes
Peter Steven no Graham Pam yes

...... lan Pippa yes
Steven Peter no Brian Pippa yes
Steven Graham no Anna Nikki yes
Steven Pam yes Nikki Anna yes
Steven Grace no All the rest no
lan Pippa yes
Anna Nikki yes
Nikki Anna yes

Figure 2.1 A family tree and two ways of expressing the sister-of relation.

much practical use in real-life problems because they rarely involve “closed”
worlds in which you can be certain that all cases are covered.

Neither table in Figure 2.1 is of any use without the family tree itself. This
tree can also be expressed in the form of a table, part of which is shown in Table
2.3. Now the problem is expressed in terms of two relationships. But these tables
do not contain independent sets of instances because values in the Name,
Parentl, and Parent2 columns of the sister-of relation refer to rows of the family
tree relation. We can make them into a single set of instances by collapsing the
two tables into the single one of Table 2.4.

We have at last succeeded in transforming the original relational problem
into the form of instances, each of which is an individual, independent example



2.2 WHAT’S IN AN EXAMPLE? 47

Table 2.3 Family tree represented as a table.
Name Gender Parent1 Parent2
Peter male ? ?
Peggy female ? ?
Steven male Peter Peggy
Graham male Peter Peggy
Pam female Peter Peggy
lan male Grace Ray

Table 2.4 The sister-of relation represented in a table.
First person Second person
Name Gender Parentl Parent2  Name Gender  Parentl Parent2  Sister of?
Steven male Peter Peggy Pam female Peter Peggy yes
Graham male Peter Peggy Pam female Peter Peggy yes
lan male Grace Ray Pippa female Grace Ray yes
Brian male Grace Ray Pippa female Grace Ray yes
Anna female Pam lan Nikki female Pam lan yes
Nikki female Pam lan Anna female Pam lan yes
all the rest no

of the concept that is to be learned. Of course, the instances are not really inde-
pendent—there are plenty of relationships among different rows of the table!—
but they are independent as far as the concept of sisterhood is concerned. Most
machine learning schemes will still have trouble dealing with this kind of data,
as we will see in Section 3.6, but at least the problem has been recast into the
right form. A simple rule for the sister-of relation is as follows:

If second person’s gender = female
and first person’s parentl = second person’s parentl
then sister-of = yes

This example shows how you can take a relationship between different nodes
of a tree and recast it into a set of independent instances. In database terms, you
take two relations and join them together to make one, a process of flattening
that is technically called denormalization. It is always possible to do this with
any (finite) set of (finite) relations.

The structure of Table 2.4 can be used to describe any relationship between
two people—grandparenthood, second cousins twice removed, and so on. Rela-



44

CHAPTER 2 | INPUT: CONCEPTS, INSTANCES, AND ATTRIBUTES

tionships among more people would require alarger table. Relationships in which
the maximum number of people is not specified in advance pose a more serious
problem. If we want to learn the concept of nuclear family (parents and their chil-
dren), the number of people involved depends on the size of the largest nuclear
family, and although we could guess at a reasonable maximum (10? 20?), the
actual number could only be found by scanning the tree itself. Nevertheless, given
a finite set of finite relations we could, at least in principle, form a new “superre-
lation” that contained one row for every combination of people, and this would
be enough to express any relationship between people no matter how many were
involved. The computational and storage costs would, however, be prohibitive.

Another problem with denormalization is that it produces apparent regular-
ities in the data that are completely spurious and are in fact merely reflections
of the original database structure. For example, imagine a supermarket data-
base with a relation for customers and the products they buy, one for products
and their supplier, and one for suppliers and their address. Denormalizing this
will produce a flat file that contains, for each instance, customer, product, sup-
plier, and supplier address. A database mining tool that seeks structure in the
database may come up with the fact that customers who buy beer also buy chips,
a discovery that could be significant from the supermarket manager’s point of
view. However, it may also come up with the fact that supplier address can be
predicted exactly from supplier—a “discovery” that will not impress the super-
market manager at all. This fact masquerades as a significant discovery from the
flat file but is present explicitly in the original database structure.

Many abstract computational problems involve relations that are not finite,
although clearly any actual set of input instances must be finite. Concepts such
as ancestor-of involve arbitrarily long paths through a tree, and although the
human race,and hence its family tree, may be finite (although prodigiously large),
many artificial problems generate data that truly is infinite. Although it may
sound abstruse, this situation is the norm in areas such as list processing and logic
programming and is addressed in a subdiscipline of machine learning called
inductive logic programming. Computer scientists usually use recursion to deal
with situations in which the number of possible instances is infinite. For example,

If personl is a parent of person2
then personl is an ancestor of person2
If personl is a parent of person2
and person2 is an ancestor of person3
then personl is an ancestor of person3

is a simple recursive definition of ancestor that works no matter how distantly
two people are related. Techniques of inductive logic programming can learn
recursive rules such as these from a finite set of instances such as those in Table
2.5.



2.3

WHAT’S IN AN ATTRIBUTE?

49

Table 2.5 Another relation represented as a table.
First person Second person
Ancestor
Name Gender Parent1 Parent2 Name Gender Parent1 Parent2 of?
Peter male ? ? Steven male Peter Peggy yes
Peter male ? ? Pam female Peter Peggy yes
Peter male ? ? Anna female Pam lan yes
Peter male ? ? Nikki female Pam lan yes
Pam female Peter Peggy Nikki female Pam lan yes
Grace  female ? ? lan male Grace Ray yes
Grace  female ? ? Nikki female Pam lan yes
other examples here yes
all the rest no

23

The real drawbacks of such techniques, however, are that they do not cope
well with noisy data, and they tend to be so slow as to be unusable on anything
but small artificial datasets. They are not covered in this book; see Bergadano
and Gunetti (1996) for a comprehensive treatment.

In summary, the input to a data mining scheme is generally expressed as a
table of independent instances of the concept to be learned. Because of this, it
has been suggested, disparagingly, that we should really talk of file mining rather
than database mining. Relational data is more complex than a flat file. A finite
set of finite relations can always be recast into a single table, although often at
enormous cost in space. Moreover, denormalization can generate spurious
regularities in the data, and it is essential to check the data for such artifacts
before applying a learning method. Finally, potentially infinite concepts can be
dealt with by learning rules that are recursive, although that is beyond the scope
of this book.

What's in an attribute?

Each individual, independent instance that provides the input to machine
learning is characterized by its values on a fixed, predefined set of features or
attributes. The instances are the rows of the tables that we have shown for the
weather, contact lens, iris, and CPU performance problems, and the attributes
are the columns. (The labor negotiations data was an exception: we presented
this with instances in columns and attributes in rows for space reasons.)

The use of a fixed set of features imposes another restriction on the kinds of
problems generally considered in practical data mining. What if different



dl

CHAPTER 2 | INPUT: CONCEPTS, INSTANCES, AND ATTRIBUTES

instances have different features? If the instances were transportation vehicles,
then number of wheels is a feature that applies to many vehicles but not to ships,
for example, whereas number of masts might be a feature that applies to ships
but not to land vehicles. The standard workaround is to make each possible
feature an attribute and to use a special “irrelevant value” flag to indicate that a
particular attribute is not available for a particular case. A similar situation arises
when the existence of one feature (say, spouse’s name) depends on the value of
another (married or single).

The value of an attribute for a particular instance is a measurement of the
quantity to which the attribute refers. There is a broad distinction between quan-
tities that are numeric and ones that are nominal. Numeric attributes, sometimes
called continuous attributes, measure numbers—either real or integer valued.
Note that the term continuous is routinely abused in this context: integer-valued
attributes are certainly not continuous in the mathematical sense. Nominal
attributes take on values in a prespecified, finite set of possibilities and are some-
times called categorical. But there are other possibilities. Statistics texts often
introduce “levels of measurement” such as nominal, ordinal, interval, and ratio.

Nominal quantities have values that are distinct symbols. The values them-
selves serve just as labels or names—hence the term nominal, which comes from
the Latin word for name. For example, in the weather data the attribute outlook
has values sunny, overcast, and rainy. No relation is implied among these
three—no ordering or distance measure. It certainly does not make sense to add
the values together, multiply them, or even compare their size. A rule using such
an attribute can only test for equality or inequality, as follows:

outlook: sunny — no
overcast — yes
rainy — yes

Ordinal quantities are ones that make it possible to rank order the categories.
However, although there is a notion of ordering, there is no notion of distance.
For example, in the weather data the attribute temperature has values hot, mi1d,
and cool. These are ordered. Whether you say

hot > mild > cool or hot < mild < cool

is a matter of convention—it does not matter which is used as long as consis-
tency is maintained. What is important is that mild lies between the other two.
Although it makes sense to compare two values, it does not make sense to add
or subtract them—the difference between hot and mild cannot be compared
with the difference between mild and cool. A rule using such an attribute might
involve a comparison, as follows:

temperature = hot — no
temperature < hot — yes



2.3 WHAT’S IN AN ATTRIBUTE? 01

Notice that the distinction between nominal and ordinal quantities is not
always straightforward and obvious. Indeed, the very example of an ordinal
quantity that we used previously, outlook, is not completely clear: you might
argue that the three values do have an ordering—overcast being somehow inter-
mediate between sunny and rainy as weather turns from good to bad.

Interval quantities have values that are not only ordered but also measured
in fixed and equal units. A good example is temperature, expressed in degrees
(say, degrees Fahrenheit) rather than on the nonnumeric scale implied by cool,
mild, and hot. It makes perfect sense to talk about the difference between two
temperatures, say 46 and 48 degrees, and compare that with the difference
between another two temperatures, say 22 and 24 degrees. Another example is
dates. You can talk about the difference between the years 1939 and 1945 (6
years) or even the average of the years 1939 and 1945 (1942), but it doesn’t make
much sense to consider the sum of the years 1939 and 1945 (3884) or three
times the year 1939 (5817), because the starting point, year 0, is completely
arbitrary—indeed, it has changed many times throughout the course of his-
tory. (Children sometimes wonder what the year 300 Bc was called in 300 Bc.)

Ratio quantities are ones for which the measurement method inherently
defines a zero point. For example, when measuring the distance from one object
to others, the distance between the object and itself forms a natural zero. Ratio
quantities are treated as real numbers: any mathematical operations are allowed.
It certainly does make sense to talk about three times the distance and even to
multiply one distance by another to get an area.

However, the question of whether there is an “inherently” defined zero point
depends on our scientific knowledge—it’s culture relative. For example, Daniel
Fahrenheit knew no lower limit to temperature, and his scale is an interval one.
Nowadays, however, we view temperature as a ratio scale based on absolute zero.
Measurement of time in years since some culturally defined zero such as Ap 0
is not a ratio scale; years since the big bang is. Even the zero point of money—
where we are usually quite happy to say that something cost twice as much as
something else—may not be quite clearly defined for those of us who constantly
max out our credit cards.

Most practical data mining systems accommodate just two of these four levels
of measurement: nominal and ordinal. Nominal attributes are sometimes called
categorical, enumerated, or discrete. Enumerated is the standard term used in
computer science to denote a categorical data type; however, the strict defini-
tion of the term—namely, to put into one-to-one correspondence with the
natural numbers—implies an ordering, which is specifically not implied in the
machine learning context. Discrete also has connotations of ordering because
you often discretize a continuous, numeric quantity. Ordinal attributes are
generally called numeric, or perhaps continuous, but without the implication of
mathematical continuity. A special case of the nominal scale is the dichotomy,



bl

24

CHAPTER 2 | INPUT: CONCEPTS, INSTANCES, AND ATTRIBUTES

which has only two members—often designated as true and false, or yes and no
in the weather data. Such attributes are sometimes called Boolean.

Machine learning systems can use a wide variety of other information about
attributes. For instance, dimensional considerations could be used to restrict the
search to expressions or comparisons that are dimensionally correct. Circular
ordering could affect the kinds of tests that are considered. For example, in a
temporal context, tests on a day attribute could involve next day, previous day,
next weekday, and same day next week. Partial orderings, that is, generalization
or specialization relations, frequently occur in practical situations. Information
of this kind is often referred to as metadata, data about data. However, the kinds
of practical methods used for data mining are rarely capable of taking metadata
into account, although it is likely that these capabilities will develop rapidly in
the future. (We return to this in Chapter 8.)

Preparing the input

Preparing input for a data mining investigation usually consumes the bulk of
the effort invested in the entire data mining process. Although this book is not
really about the problems of data preparation, we want to give you a feeling for
the issues involved so that you can appreciate the complexities. Following that,
we look at a particular input file format, the attribute-relation file format (ARFF
format), that is used in the Java package described in Part II. Then we consider
issues that arise when converting datasets to such a format, because there are
some simple practical points to be aware of. Bitter experience shows that real
data is often of disappointingly low in quality, and careful checking—a process
that has become known as data cleaning—pays off many times over.

Gathering the data together

When beginning work on a data mining problem, it is first necessary to bring
all the data together into a set of instances. We explained the need to denor-
malize relational data when describing the family tree example. Although it
illustrates the basic issue, this self-contained and rather artificial example does
not really convey a feeling for what the process will be like in practice. In a real
business application, it will be necessary to bring data together from different
departments. For example, in a marketing study data will be needed from the
sales department, the customer billing department, and the customer service
department.

Integrating data from different sources usually presents many challenges—
not deep issues of principle but nasty realities of practice. Different departments
will use different styles of record keeping, different conventions, different time
periods, different degrees of data aggregation, different primary keys, and will
have different kinds of error. The data must be assembled, integrated, and



2.4 PREPARING THE INPUT 53

cleaned up. The idea of company wide database integration is known as data
warehousing. Data warehouses provide a single consistent point of access to cor-
porate or organizational data, transcending departmental divisions. They are
the place where old data is published in a way that can be used to inform busi-
ness decisions. The movement toward data warehousing is a recognition of the
fact that the fragmented information that an organization uses to support day-
to-day operations at a departmental level can have immense strategic value
when brought together. Clearly, the presence of a data warehouse is a very useful
precursor to data mining, and if it is not available, many of the steps involved
in data warehousing will have to be undertaken to prepare the data for mining.

Often even a data warehouse will not contain all the necessary data, and you
may have to reach outside the organization to bring in data relevant to the
problem at hand. For example, weather data had to be obtained in the load
forecasting example in the last chapter, and demographic data is needed for
marketing and sales applications. Sometimes called overlay data, this is not nor-
mally collected by an organization but is clearly relevant to the data mining
problem. It, too, must be cleaned up and integrated with the other data that has
been collected.

Another practical question when assembling the data is the degree of aggre-
gation that is appropriate. When a dairy farmer decides which cows to sell, the
milk production records—which an automatic milking machine records twice
a day—must be aggregated. Similarly, raw telephone call data is of little use when
telecommunications companies study their clients” behavior: the data must be
aggregated to the customer level. But do you want usage by month or by quarter,
and for how many months or quarters in arrears? Selecting the right type and
level of aggregation is usually critical for success.

Because so many different issues are involved, you can’t expect to get it right
the first time. This is why data assembly, integration, cleaning, aggregating, and
general preparation take so long.

ARFF format

We now look at a standard way of representing datasets that consist of inde-
pendent, unordered instances and do not involve relationships among instances,
called an ARFF file.

Figure 2.2 shows an ARFF file for the weather data in Table 1.3, the version
with some numeric features. Lines beginning with a ¢ sign are comments.
Following the comments at the beginning of the file are the name of the rela-
tion (weather) and a block defining the attributes (outlook, temperature, humid-
ity, windy, play?). Nominal attributes are followed by the set of values they can
take on, enclosed in curly braces. Values can include spaces; if so, they must be
placed within quotation marks. Numeric values are followed by the keyword

numeric.



54 CHAPTER 2 | INPUT: CONCEPTS, INSTANCES, AND ATTRIBUTES

ARFF file for the weather data with some numeric features

)
°
)

°

@relation weather

@attribute outlook { sunny, overcast, rainy }
@attribute temperature numeric

@attribute humidity numeric

@attribute windy { true, false }

@attribute play? { yes, no }

®
[oN)
Q
o
Q

14 instances

o0 o0 o

sunny, 85, 85, false, no
sunny, 80, 90, true, no
overcast, 83, 86, false, yes
rainy, 70, 96, false, yes
rainy, 68, 80, false, yes
rainy, 65, 70, true, no
overcast, 64, 65, true, yes
sunny, 72, 95, false, no
sunny, 69, 70, false, vyes
rainy, 75, 80, false, yes
sunny, 75, 70, true, yes
overcast, 72, 90, true, yes
overcast, 81, 75, false, yes
rainy, 71, 91, true, no

Figure 2.2 ARFF file for the weather data.

Although the weather problem is to predict the class value play?
from the values of the other attributes, the class attribute is not dis-
tinguished in any way in the data file. The ARFF format merely gives
a dataset; it does not specify which of the attributes is the one that
is supposed to be predicted. This means that the same file can be used
for investigating how well each attribute can be predicted from the
others, or to find association rules, or for clustering.

Following the attribute definitions is an edata line that signals the
start of the instances in the dataset. Instances are written one per line,
with values for each attribute in turn, separated by commas. If a value
is missing it is represented by a single question mark (there are no



2.4 PREPARING THE INPUT 55

missing values in this dataset). The attribute specifications in ARFF files allow
the dataset to be checked to ensure that it contains legal values for all attributes,
and programs that read ARFF files do this checking automatically.

In addition to nominal and numeric attributes, exemplified by the weather
data, the ARFF format has two further attribute types: string attributes and date
attributes. String attributes have values that are textual. Suppose you have a
string attribute that you want to call description. In the block defining the attrib-
utes, it is specified as follows:

@attribute description string

Then, in the instance data, include any character string in quotation marks (to
include quotation marks in your string, use the standard convention of pre-
ceding each one by a backslash, \). Strings are stored internally in a string table
and represented by their address in that table. Thus two strings that contain the
same characters will have the same value.

String attributes can have values that are very long—even a whole document.
To be able to use string attributes for text mining, it is necessary to be able to
manipulate them. For example, a string attribute might be converted into many
numeric attributes, one for each word in the string, whose value is the number
of times that word appears. These transformations are described in Section 7.3.

Date attributes are strings with a special format and are introduced like this:

@attribute today date

(for an attribute called today). Weka, the machine learning software discussed
in Part IT of this book, uses the ISO-8601 combined date and time format yyyy-
MM-dd-THH:mm:ss with four digits for the year, two each for the month and
day, then the letter T followed by the time with two digits for each of hours,
minutes, and seconds.' In the data section of the file, dates are specified as the
corresponding string representation of the date and time, for example, 2004-04-
03T12:00:00. Although they are specified as strings, dates are converted to
numeric form when the input file is read. Dates can also be converted internally
to different formats, so you can have absolute timestamps in the data file and
use transformations to forms such as time of day or day of the week to detect
periodic behavior.

Sparse data

Sometimes most attributes have a value of 0 for most the instances. For example,
market basket data records purchases made by supermarket customers. No

"Weka contains a mechanism for defining a date attribute to have a different format by
including a special string in the attribute definition.



i

CHAPTER 2 | INPUT: CONCEPTS, INSTANCES, AND ATTRIBUTES

matter how big the shopping expedition, customers never purchase more than
a tiny portion of the items a store offers. The market basket data contains the
quantity of each item that the customer purchases, and this is zero for almost
all items in stock. The data file can be viewed as a matrix whose rows and
columns represent customers and stock items, and the matrix is “sparse”—
nearly all its elements are zero. Another example occurs in text mining, in which
the instances are documents. Here, the columns and rows represent documents
and words, and the numbers indicate how many times a particular word appears
in a particular document. Most documents have a rather small vocabulary, so
most entries are zero.

It can be impractical to represent each element of a sparse matrix explicitly,
writing each value in order, as follows:

0, 26, 0, 0, 0, O, 63, 0, 0, 0, “class A"
o, o, 0, 42, 0, 0, 0, 0, 0, 0, “class B”

Instead, the nonzero attributes can be explicitly identified by attribute number
and their value stated:

{1 26, 6 63, 10 “class A"}
{3 42, 10 ©“class B"}

Each instance is enclosed in curly braces and contains the index number of each
nonzero attribute (indexes start from 0) and its value. Sparse data files have the
same erelation and eattribute tags, followed by an edata line, but the data
section is different and contains specifications in braces such as those shown
previously. Note that the omitted values have a value of 0—they are not
“missing” values! If a value is unknown, it must be explicitly represented with
a question mark.

Attribute types

AREFF files accommodate the two basic data types, nominal and numeric. String
attributes and date attributes are effectively nominal and numeric, respectively,
although before they are used strings are often converted into a numeric form
such as a word vector. But how the two basic types are interpreted depends on
the learning method being used. For example, most methods treat numeric
attributes as ordinal scales and only use less-than and greater-than comparisons
between the values. However, some treat them as ratio scales and use distance
calculations. You need to understand how machine learning methods work
before using them for data mining.

If a learning method treats numeric attributes as though they are measured
on ratio scales, the question of normalization arises. Attributes are often nor-
malized to lie in a fixed range, say, from zero to one, by dividing all values by
the maximum value encountered or by subtracting the minimum value and



2.4 PREPARING THE INPUT 57

dividing by the range between the maximum and the minimum values. Another
normalization technique is to calculate the statistical mean and standard
deviation of the attribute values, subtract the mean from each value, and divide
the result by the standard deviation. This process is called standardizing a sta-
tistical variable and results in a set of values whose mean is zero and standard
deviation is one.

Some learning methods—for example, varieties of instance-based learning
and regression methods—deal only with ratio scales because they calculate
the “distance” between two instances based on the values of their attributes. If
the actual scale is ordinal, a numeric distance function must be defined. One
way of doing this is to use a two-level distance: one if the two values are differ-
ent and zero if they are the same. Any nominal quantity can be treated as numeric
by using this distance function. However, it is rather a crude technique and con-
ceals the true degree of variation between instances. Another possibility is to gen-
erate several synthetic binary attributes for each nominal attribute: we return to
this in Section 6.5 when we look at the use of trees for numeric prediction.

Sometimes there is a genuine mapping between nominal quantities and
numeric scales. For example, postal ZIP codes indicate areas that could be rep-
resented by geographic coordinates; the leading digits of telephone numbers
may do so, too, depending on where you live. The first two digits of a student’s
identification number may be the year in which she first enrolled.

It is very common for practical datasets to contain nominal values that are
coded as integers. For example, an integer identifier may be used as a code for
an attribute such as part number, yet such integers are not intended for use in
less-than or greater-than comparisons. If this is the case, it is important to
specify that the attribute is nominal rather than numeric.

It is quite possible to treat an ordinal quantity as though it were nominal.
Indeed, some machine learning methods only deal with nominal elements. For
example, in the contact lens problem the age attribute is treated as nominal, and
the rules generated included the following:

If age = young and astigmatic = no and

tear production rate = normal then recommendation = soft
If age = pre-presbyopic and astigmatic = no and

tear production rate = normal then recommendation = soft

But in fact age, specified in this way, is really an ordinal quantity for which the
following is true:

young < pre-presbyopic < presbyopic
If it were treated as ordinal, the two rules could be collapsed into one:

If age < pre-presbyopic and astigmatic = no and
tear production rate = normal then recommendation = soft



o8

CHAPTER 2 | INPUT: CONCEPTS, INSTANCES, AND ATTRIBUTES

which is a more compact, and hence more satisfactory, way of saying the same
thing.

Missing values

Most datasets encountered in practice, such as the labor negotiations data in
Table 1.6, contain missing values. Missing values are frequently indicated by out-
of-range entries, perhaps a negative number (e.g., —1) in a numeric field that is
normally only positive or a 0 in a numeric field that can never normally be 0.
For nominal attributes, missing values may be indicated by blanks or dashes.
Sometimes different kinds of missing values are distinguished (e.g., unknown
vs. unrecorded vs. irrelevant values) and perhaps represented by different
negative integers (-1, =2, etc.).

You have to think carefully about the significance of missing values. They may
occur for several reasons, such as malfunctioning measurement equipment,
changes in experimental design during data collection, and collation of several
similar but not identical datasets. Respondents in a survey may refuse to answer
certain questions such as age or income. In an archaeological study, a specimen
such as a skull may be damaged so that some variables cannot be measured.
In a biologic one, plants or animals may die before all variables have been
measured. What do these things mean about the example under consideration?
Might the skull damage have some significance in itself, or is it just because of
some random event? Does the plants’ early death have some bearing on the case
or not?

Most machine learning methods make the implicit assumption that there is
no particular significance in the fact that a certain instance has an attribute value
missing: the value is simply not known. However, there may be a good reason
why the attribute’s value is unknown—perhaps a decision was made, on the evi-
dence available, not to perform some particular test—and that might convey
some information about the instance other than the fact that the value is simply
missing. If this is the case, then it would be more appropriate to record not tested
as another possible value for this attribute or perhaps as another attribute in the
dataset. As the preceding examples illustrate, only someone familiar with the data
can make an informed judgment about whether a particular value being missing
has some extra significance or whether it should simply be coded as an ordinary
missing value. Of course, if there seem to be several types of missing value, that
is prima facie evidence that something is going on that needs to be investigated.

If missing values mean that an operator has decided not to make a particu-
lar measurement, that may convey a great deal more than the mere fact that the
value is unknown. For example, people analyzing medical databases have
noticed that cases may, in some circumstances, be diagnosable simply from the
tests that a doctor decides to make regardless of the outcome of the tests. Then



2.4 PREPARING THE INPUT 59

a record of which values are “missing” is all that is needed for a complete
diagnosis—the actual values can be ignored completely!

Inaccurate values

It is important to check data mining files carefully for rogue attributes and
attribute values. The data used for mining has almost certainly not been gath-
ered expressly for that purpose. When originally collected, many of the fields
probably didn’t matter and were left blank or unchecked. Provided that it does
not affect the original purpose of the data, there is no incentive to correct it.
However, when the same database is used for mining, the errors and omissions
suddenly start to assume great significance. For example, banks do not really need
to know the age of their customers, so their databases may contain many missing
or incorrect values. But age may be a very significant feature in mined rules.

Typographic errors in a dataset will obviously lead to incorrect values. Often
the value of a nominal attribute is misspelled, creating an extra possible value
for that attribute. Or perhaps it is not a misspelling but different names for the
same thing, such as Pepsi and Pepsi Cola. Obviously the point of a defined
format such as ARFF is to allow data files to be checked for internal consistency.
However, errors that occur in the original data file are often preserved through
the conversion process into the file that is used for data mining; thus the list of
possible values that each attribute takes on should be examined carefully.

Typographic or measurement errors in numeric values generally cause out-
liers that can be detected by graphing one variable at a time. Erroneous values
often deviate significantly from the pattern that is apparent in the remaining
values. Sometimes, however, inaccurate values are hard to find, particularly
without specialist domain knowledge.

Duplicate data presents another source of error. Most machine learning tools
will produce different results if some of the instances in the data files are dupli-
cated, because repetition gives them more influence on the result.

People often make deliberate errors when entering personal data into data-
bases. They might make minor changes in the spelling of their street to try to
identify whether the information they have provided was sold to advertising
agencies that burden them with junk mail. They might adjust the spelling of
their name when applying for insurance if they have had insurance refused in
the past. Rigid computerized data entry systems often impose restrictions that
require imaginative workarounds. One story tells of a foreigner renting a vehicle
in the United States. Being from abroad, he had no ZIP code, yet the computer
insisted on one; in desperation the operator suggested that he use the ZIP code
of the rental agency. If this is common practice, future data mining projects may
notice a cluster of customers who apparently live in the same district as the agency!
Similarly, a supermarket checkout operator sometimes uses his own frequent



ifl

25

CHAPTER 2 | INPUT: CONCEPTS, INSTANCES, AND ATTRIBUTES

buyer card when the customer does not supply one, either so that the customer
can get a discount that would otherwise be unavailable or simply to accumulate
credit points in the cashier’s account. Only a deep semantic knowledge of what is
going on will be able to explain systematic data errors such as these.

Finally, data goes stale. Many items change as circumstances change. For
example, items in mailing lists—names, addresses, telephone numbers, and so
on—change frequently. You need to consider whether the data you are mining
is still current.

Getting to know your data

There is no substitute for getting to know your data. Simple tools that show his-
tograms of the distribution of values of nominal attributes, and graphs of the
values of numeric attributes (perhaps sorted or simply graphed against instance
number), are very helpful. These graphical visualizations of the data make it
easy to identify outliers, which may well represent errors in the data file—or
arcane conventions for coding unusual situations, such as a missing year as 9999
or a missing weight as —1 kg, that no one has thought to tell you about. Domain
experts need to be consulted to explain anomalies, missing values, the signifi-
cance of integers that represent categories rather than numeric quantities, and
so on. Pairwise plots of one attribute against another, or each attribute against
the class value, can be extremely revealing.

Data cleaning is a time-consuming and labor-intensive procedure but one
that is absolutely necessary for successful data mining. With a large dataset,
people often give up—how can they possibly check it all? Instead, you should
sample a few instances and examine them carefully. You'll be surprised at what
you find. Time looking at your data is always well spent.

Further reading

Pyle (1999) provides an extensive guide to data preparation for data mining.
There is also a great deal of current interest in data warehousing and the prob-
lems it entails. Kimball (1996) offers the best introduction to these that we know
of. Cabena et al. (1998) estimate that data preparation accounts for 60% of the
effort involved in a data mining application, and they write at some length about
the problems involved.

The area of inductive logic programming, which deals with finite and infi-
nite relations, is covered by Bergadano and Gunetti (1996). The different “levels
of measurement” for attributes were introduced by Stevens (1946) and are well
described in the manuals for statistical packages such as SPSS (Nie et al. 1970).



Knowledge Representation

Most of the techniques in this book produce easily comprehensible descriptions
of the structural patterns in the data. Before looking at how these techniques
work, we have to see how structural patterns can be expressed. There are many
different ways for representing the patterns that can be discovered by machine
learning, and each one dictates the kind of technique that can be used to infer
that output structure from data. Once you understand how the output is
represented, you have come a long way toward understanding how it can be
generated.

We saw many examples of data mining in Chapter 1. In these cases the output
took the form of decision trees and classification rules, which are basic knowl-
edge representation styles that many machine learning methods use. Knowledge
is really too imposing a word for a decision tree or a collection of rules, and by
using it we don’t really mean to imply that these structures vie with the real kind
of knowledge that we carry in our heads: it’s just that we need some word to
refer to the structures that learning methods produce. There are more complex
varieties of rules that allow exceptions to be specified, and ones that can express

il



62

3.1

3.2

CHAPTER 3 | OUTPUT: KNOWLEDGE REPRESENTATION

relations among the values of the attributes of different instances. Special forms
of trees can be used for numeric prediction, too. Instance-based representations
focus on the instances themselves rather than rules that govern their attribute
values. Finally, some learning methods generate clusters of instances. These dif-
ferent knowledge representation methods parallel the different kinds of learn-
ing problems introduced in Chapter 2.

Decision tables

The simplest, most rudimentary way of representing the output from machine
learning is to make it just the same as the input—a decision table. For example,
Table 1.2 is a decision table for the weather data: you just look up the appro-
priate conditions to decide whether or not to play. Less trivially, creating a deci-
sion table might involve selecting some of the attributes. If temperature is
irrelevant to the decision, for example, a smaller, condensed table with that
attribute missing would be a better guide. The problem is, of course, to decide
which attributes to leave out without affecting the final decision.

Decision trees

A “divide-and-conquer” approach to the problem of learning from a set of inde-
pendent instances leads naturally to a style of representation called a decision
tree. We have seen some examples of decision trees, for the contact lens (Figure
1.2) and labor negotiations (Figure 1.3) datasets. Nodes in a decision tree involve
testing a particular attribute. Usually, the test at a node compares an attribute
value with a constant. However, some trees compare two attributes with each
other, or use some function of one or more attributes. Leaf nodes give a classi-
fication that applies to all instances that reach the leaf, or a set of classifications,
or a probability distribution over all possible classifications. To classify an
unknown instance, it is routed down the tree according to the values of the
attributes tested in successive nodes, and when a leaf is reached the instance is
classified according to the class assigned to the leaf.

If the attribute that is tested at a node is a nominal one, the number of chil-
dren is usually the number of possible values of the attribute. In this case,
because there is one branch for each possible value, the same attribute will not
be retested further down the tree. Sometimes the attribute values are divided
into two subsets, and the tree branches just two ways depending on which subset
the value lies in the tree; in that case, the attribute might be tested more than
once in a path.

If the attribute is numeric, the test at a node usually determines whether its
value is greater or less than a predetermined constant, giving a two-way split.



3.2  DECISION TREES 63

Alternatively, a three-way split may be used, in which case there are several dif-
ferent possibilities. If missing value is treated as an attribute value in its own
right, that will create a third branch. An alternative for an integer-valued attrib-
ute would be a three-way split into less than, equal to, and greater than. An alter-
native for a real-valued attribute, for which equal to is not such a meaningful
option, would be to test against an interval rather than a single constant, again
giving a three-way split: below, within, and above. A numeric attribute is often
tested several times in any given path down the tree from root to leaf, each test
involving a different constant. We return to this when describing the handling
of numeric attributes in Section 6.1.

Missing values pose an obvious problem. It is not clear which branch should
be taken when a node tests an attribute whose value is missing. Sometimes, as
described in Section 2.4, missing value is treated as an attribute value in its own
right. If this is not the case, missing values should be treated in a special way
rather than being considered as just another possible value that the attribute
might take. A simple solution is to record the number of elements in the train-
ing set that go down each branch and to use the most popular branch if the
value for a test instance is missing.

A more sophisticated solution is to notionally split the instance into pieces
and send part of it down each branch and from there right on down to the leaves
of the subtrees involved. The split is accomplished using a numeric weight
between zero and one, and the weight for a branch is chosen to be proportional
to the number of training instances going down that branch, all weights
summing to one. A weighted instance may be further split at a lower node. Even-
tually, the various parts of the instance will each reach a leaf node, and the deci-
sions at these leaf nodes must be recombined using the weights that have
percolated down to the leaves. We return to this in Section 6.1.

It is instructive and can even be entertaining to build a decision tree for a
dataset manually. To do so effectively, you need a good way of visualizing the
data so that you can decide which are likely to be the best attributes to test and
what an appropriate test might be. The Weka Explorer, described in Part II, has
a User Classifier facility that allows users to construct a decision tree interac-
tively. It presents you with a scatter plot of the data against two selected attrib-
utes, which you choose. When you find a pair of attributes that discriminates
the classes well, you can create a two-way split by drawing a polygon around the
appropriate data points on the scatter plot.

For example, in Figure 3.1(a) the user is operating on a dataset with three
classes, the iris dataset, and has found two attributes, petallength and petalwidth,
that do a good job of splitting up the classes. A rectangle has been drawn, man-
ually, to separate out one of the classes (Iris versicolor). Then the user switches
to the decision tree view in Figure 3.1(b) to see the tree so far. The left-hand
leaf node contains predominantly irises of one type (Iris versicolor, contami-



54 CHAPTER 3 | OUTPUT: KNOWLEDGE REPRESENTATION

®eoe6e
— Tree Visualizer Data Visualizer } e
‘X: petallength (Num) %) [Y: petalwidth (Num) )
Colour: class (Nom) = f Rectangle :]

( Submit )( Clear )( Save ) Jitter @

rPlot: iris

Class colour

Iris-setosa Iris-versicolor

aXala)

( . " )1
Tree Visualizer | Data Visualizer

~Tree View

Spliton
petallength AND
petalwidth

True False

7

[Iris-versicolor, 48.0]| | [Iris-setosa, 50.0]
[Iris-virginica, 2.0] | |[Iris-versicolor, 2.0]
!|[Iris-virginica, 48.0]

/4
(b)

Figure 3.1 Constructing a decision tree interactively: (a) creating a rectangular test
involving petallength and petalwidth and (b) the resulting (unfinished) decision tree.



3.3

3.3  CLASSIFICATION RULES 65

nated by only two virginicas); the right-hand one contains predominantly two
types (Iris setosa and virginica, contaminated by only two versicolors). The user
will probably select the right-hand leaf and work on it next, splitting it further
with another rectangle—perhaps based on a different pair of attributes
(although, from Figure 3.1[a], these two look pretty good).

Section 10.2 explains how to use Weka’s User Classifier facility. Most people
enjoy making the first few decisions but rapidly lose interest thereafter, and one
very useful option is to select a machine learning method and let it take over at
any point in the decision tree. Manual construction of decision trees is a good
way to get a feel for the tedious business of evaluating different combinations
of attributes to split on.

Classification rules

Classification rules are a popular alternative to decision trees, and we have
already seen examples for the weather (page 10), contact lens (page 13), iris
(page 15), and soybean (page 18) datasets. The antecedent, or precondition, of
arule is a series of tests just like the tests at nodes in decision trees, and the con-
sequent, or conclusion, gives the class or classes that apply to instances covered
by that rule, or perhaps gives a probability distribution over the classes. Gener-
ally, the preconditions are logically ANDed together, and all the tests must
succeed if the rule is to fire. However, in some rule formulations the precondi-
tions are general logical expressions rather than simple conjunctions. We often
think of the individual rules as being effectively logically ORed together: if any
one applies, the class (or probability distribution) given in its conclusion is
applied to the instance. However, conflicts arise when several rules with differ-
ent conclusions apply; we will return to this shortly.

It is easy to read a set of rules directly off a decision tree. One rule is gener-
ated for each leaf. The antecedent of the rule includes a condition for every node
on the path from the root to that leaf, and the consequent of the rule is the
class assigned by the leaf. This procedure produces rules that are unambigu-
ous in that the order in which they are executed is irrelevant. However, in
general, rules that are read directly off a decision tree are far more complex than
necessary, and rules derived from trees are usually pruned to remove redundant
tests.

Because decision trees cannot easily express the disjunction implied among
the different rules in a set, transforming a general set of rules into a tree is not
quite so straightforward. A good illustration of this occurs when the rules have
the same structure but different attributes, like:

If a and b then x
If ¢ and d then x



ifi

CHAPTER 3 | OUTPUT: KNOWLEDGE REPRESENTATION

X

Figure 3.2 Decision tree for a simple disjunction.

Then it is necessary to break the symmetry and choose a single test for the root
node. If, for example, a is chosen, the second rule must, in effect, be repeated
twice in the tree, as shown in Figure 3.2. This is known as the replicated subtree
problem.

The replicated subtree problem is sufficiently important that it is worth
looking at a couple more examples. The diagram on the left of Figure 3.3 shows
an exclusive-or function for which the output is a if x= 1 or y = I but not both.
To make this into a tree, you have to split on one attribute first, leading to a
structure like the one shown in the center. In contrast, rules can faithfully reflect
the true symmetry of the problem with respect to the attributes, as shown on
the right.



3.3  CLASSIFICATION RULES 6/

@ If x=1 and y=0 then class = a

If x=0 and y=1 then class = a

no yes
If x=0 and y=0 then class = b

0 0 If x=1 and y=1 then class = b

no | yes no yes

Figure 3.3 The exclusive-or problem.

In this example the rules are not notably more compact than the tree. In fact,
they are just what you would get by reading rules off the tree in the obvious
way. But in other situations, rules are much more compact than trees, particu-
larly if it is possible to have a “default” rule that covers cases not specified by the
other rules. For example, to capture the effect of the rules in Figure 3.4—in
which there are four attributes, x, 3, z, and w, that can each be 1, 2, or 3—requires
the tree shown on the right. Each of the three small gray triangles to the upper
right should actually contain the whole three-level subtree that is displayed in
gray, a rather extreme example of the replicated subtree problem. This is a dis-
tressingly complex description of a rather simple concept.

One reason why rules are popular is that each rule seems to represent an inde-
pendent “nugget” of knowledge. New rules can be added to an existing rule set
without disturbing ones already there, whereas to add to a tree structure may
require reshaping the whole tree. However, this independence is something of
an illusion, because it ignores the question of how the rule set is executed. We
explained earlier (on page 11) the fact that if rules are meant to be interpreted
in order as a “decision list,” some of them, taken individually and out of context,
may be incorrect. On the other hand, if the order of interpretation is supposed
to be immaterial, then it is not clear what to do when different rules lead to dif-
ferent conclusions for the same instance. This situation cannot arise for rules
that are read directly off a decision tree because the redundancy included in the
structure of the rules prevents any ambiguity in interpretation. But it does arise
when rules are generated in other ways.

If a rule set gives multiple classifications for a particular example, one solu-
tion is to give no conclusion at all. Another is to count how often each rule fires
on the training data and go with the most popular one. These strategies can lead



i

CHAPTER 3 | OUTPUT: KNOWLEDGE REPRESENTATION

If x=1 and y=1 then class = a

If z=1 and w=1 then class = a

Otherwise class = b

Figure 3.4 Decision tree with a replicated subtree.

to radically different results. A different problem occurs when an instance is
encountered that the rules fail to classify at all. Again, this cannot occur with
decision trees, or with rules read directly off them, but it can easily happen with
general rule sets. One way of dealing with this situation is to fail to classify such
an example; another is to choose the most frequently occurring class as a default.
Again, radically different results may be obtained for these strategies. Individ-
ual rules are simple, and sets of rules seem deceptively simple—but given just
a set of rules with no additional information, it is not clear how it should be
interpreted.

A particularly straightforward situation occurs when rules lead to a class that
is Boolean (say, yes and no) and when only rules leading to one outcome (say,
yes) are expressed. The assumption is that if a particular instance is not in class



34

3.4  ASSOCIATION RULES 69

yes, then it must be in class no—a form of closed world assumption. If this is
the case, then rules cannot conflict and there is no ambiguity in rule interpre-
tation: any interpretation strategy will give the same result. Such a set of rules
can be written as a logic expression in what is called disjunctive normal form:
that is, as a disjunction (OR) of conjunctive (AND) conditions.

It is this simple special case that seduces people into assuming rules are very
easy to deal with, because here each rule really does operate as a new, inde-
pendent piece of information that contributes in a straightforward way to the
disjunction. Unfortunately, it only applies to Boolean outcomes and requires the
closed world assumption, and both these constraints are unrealistic in most
practical situations. Machine learning algorithms that generate rules invariably
produce ordered rule sets in multiclass situations, and this sacrifices any possi-
bility of modularity because the order of execution is critical.

Association rules

Association rules are really no different from classification rules except that they
can predict any attribute, not just the class, and this gives them the freedom to
predict combinations of attributes too. Also, association rules are not intended
to be used together as a set, as classification rules are. Different association rules
express different regularities that underlie the dataset, and they generally predict
different things.

Because so many different association rules can be derived from even a tiny
dataset, interest is restricted to those that apply to a reasonably large number of
instances and have a reasonably high accuracy on the instances to which they
apply to. The coverage of an association rule is the number of instances for which
it predicts correctly—this is often called its support. Its accuracy—often called
confidence—is the number of instances that it predicts correctly, expressed as a
proportion of all instances to which it applies. For example, with the rule:

If temperature = cool then humidity = normal

the coverage is the number of days that are both cool and have normal humid-
ity (4 days in the data of Table 1.2), and the accuracy is the proportion of cool
days that have normal humidity (100% in this case). It is usual to specify
minimum coverage and accuracy values and to seek only those rules whose cov-
erage and accuracy are both at least these specified minima. In the weather data,
for example, there are 58 rules whose coverage and accuracy are at least 2 and
95%, respectively. (It may also be convenient to specify coverage as a percent-
age of the total number of instances instead.)

Association rules that predict multiple consequences must be interpreted
rather carefully. For example, with the weather data in Table 1.2 we saw this rule:



10

35

CHAPTER 3 | OUTPUT: KNOWLEDGE REPRESENTATION

If windy = false and play = no then outlook = sunny
and humidity = high

This is not just a shorthand expression for the two separate rules:

If windy = false and play = no then outlook = sunny
If windy = false and play = no then humidity = high

It indeed implies that these exceed the minimum coverage and accuracy
figures—but it also implies more. The original rule means that the number of
examples that are nonwindy, nonplaying, with sunny outlook and high humidity,
is at least as great as the specified minimum coverage figure. It also means that
the number of such days, expressed as a proportion of nonwindy, nonplaying days,
is at least the specified minimum accuracy figure. This implies that the rule

If humidity = high and windy = false and play = no
then outlook = sunny

also holds, because it has the same coverage as the original rule, and its accu-
racy must be at least as high as the original rule’s because the number of high-
humidity, nonwindy, nonplaying days is necessarily less than that of nonwindy;,
nonplaying days—which makes the accuracy greater.

As we have seen, there are relationships between particular association
rules: some rules imply others. To reduce the number of rules that are produced,
in cases where several rules are related it makes sense to present only the
strongest one to the user. In the preceding example, only the first rule should
be printed.

Rules with exceptions

Returning to classification rules, a natural extension is to allow them to have
exceptions. Then incremental modifications can be made to a rule set by express-
ing exceptions to existing rules rather than reengineering the entire set. For
example, consider the iris problem described earlier. Suppose a new flower was
found with the dimensions given in Table 3.1, and an expert declared it to be
an instance of Iris setosa. If this flower was classified by the rules given in Chapter
1 (pages 15-16) for this problem, it would be misclassified by two of them:

Table 3.1 A new iris flower.

Sepal length (cm) Sepal width (cm) Petal length (cm) Petal width (cm)  Type

5.1 35 26 0.2 ?




3.5  RULES WITH EXCEPTIONS 11

If petal length 2.45 and petal length < 4.45 then Iris versicolor
If petal length 2.45 and petal length < 4.95 and
petal width < 1.55 then Iris versicolor

2
2

These rules require modification so that the new instance can be
treated correctly. However, simply changing the bounds for the attribute-
value tests in these rules may not suffice because the instances used to create the
rule set may then be misclassified. Fixing up a rule set is not as simple as it
sounds.

Instead of changing the tests in the existing rules, an expert might be con-
sulted to explain why the new flower violates them, receiving explanations that
could be used to extend the relevant rules only. For example, the first of these
two rules misclassifies the new Iris setosa as an instance of the genus Iris versi-
color. Instead of altering the bounds on any of the inequalities in the rule, an
exception can be made based on some other attribute:

If petal length =2 2.45 and petal length < 4.45 then
Iris versicolor EXCEPT if petal width < 1.0 then Iris setosa

This rule says that a flower is Iris versicolor if its petal length is between 2.45 cm
and 4.45cm except when its petal width is less than 1.0 cm, in which case it is
Iris setosa.

Of course, we might have exceptions to the exceptions, exceptions to
these, and so on, giving the rule set something of the character of a tree. As
well as being used to make incremental changes to existing rule sets, rules with
exceptions can be used to represent the entire concept description in the first
place.

Figure 3.5 shows a set of rules that correctly classify all examples in the Iris
dataset given earlier (pages 15-16). These rules are quite difficult to compre-
hend at first. Let’s follow them through. A default outcome has been chosen, Iris
setosa, and is shown in the first line. For this dataset, the choice of default is
rather arbitrary because there are 50 examples of each type. Normally, the most
frequent outcome is chosen as the default.

Subsequent rules give exceptions to this default. The first if . . . then, on lines
2 through 4, gives a condition that leads to the classification Iris versicolor.
However, there are two exceptions to this rule (lines 5 through 8), which we will
deal with in a moment. If the conditions on lines 2 and 3 fail, the else clause on
line 9 is reached, which essentially specifies a second exception to the original
default. If the condition on line 9 holds, the classification is Iris virginica (line
10). Again, there is an exception to this rule (on lines 11 and 12).

Now return to the exception on lines 5 through 8. This overrides the Iris ver-
sicolor conclusion on line 4 if either of the tests on lines 5 and 7 holds. As it
happens, these two exceptions both lead to the same conclusion, Iris virginica



72 CHAPTER 3 | OUTPUT: KNOWLEDGE REPRESENTATION

Default: Iris-setosa 1
except if petal-length > 2.45 and petal-length < 5.355 2
and petal-width < 1.75 3

then Iris-versicolor 4

except if petal-length = 4.95 and petal-width < 1.55 5

then Iris-virginica 6

else if sepal-length < 4.95 and sepal-width > 2.45 7

then Iris-virginica 8

else if petal-length > 3.35 9

then Iris-virginica 10

except if petal-length < 4.85 and sepal-length < 5.95 11

then Iris-versicolor 12

Figure 3.5 Rules for the Iris data.

(lines 6 and 8). The final exception is the one on lines 11 and 12, which over-
rides the Iris virginica conclusion on line 10 when the condition on line 11 is
met, and leads to the classification Iris versicolor.

You will probably need to ponder these rules for some minutes before it
becomes clear how they are intended to be read. Although it takes some time
to get used to reading them, sorting out the excepts and if... then...
elses becomes easier with familiarity. People often think of real problems in
terms of rules, exceptions, and exceptions to the exceptions, so it is often a good
way to express a complex rule set. But the main point in favor of this way of
representing rules is that it scales up well. Although the whole rule set is a little
hard to comprehend, each individual conclusion, each individual then state-
ment, can be considered just in the context of the rules and exceptions that lead
to it; whereas with decision lists, all prior rules need to be reviewed to deter-
mine the precise effect of an individual rule. This locality property is crucial
when trying to understand large rule sets. Psychologically, people familiar with
the data think of a particular set of cases, or kind of case, when looking at any
one conclusion in the exception structure, and when one of these cases turns
out to be an exception to the conclusion, it is easy to add an except clause to
cater for it.

It is worth pointing out that the default . . . except if . . . then . .. structure is
logically equivalent to if . . . then . . . else . . ., where the else is unconditional and
specifies exactly what the default did. An unconditional else is, of course, a
default. (Note that there are no unconditional elses in the preceding rules.) Log-



3.6

3.6 RULES INVOLVING RELATIONS 73

ically, the exception-based rules can very simply be rewritten in terms of regular
if ... then . .. else clauses. What is gained by the formulation in terms of excep-
tions is not logical but psychological. We assume that the defaults and the tests
that occur early apply more widely than the exceptions further down. If this is
indeed true for the domain, and the user can see that it is plausible, the expres-
sion in terms of (common) rules and (rare) exceptions will be easier to grasp
than a different, but logically equivalent, structure.

Rules involving relations

We have assumed implicitly that the conditions in rules involve testing an
attribute value against a constant. Such rules are called propositional because the
attribute-value language used to define them has the same power as what logi-
cians call the propositional calculus. In many classification tasks, propositional
rules are sufficiently expressive for concise, accurate concept descriptions. The
weather, contact lens recommendation, iris type, and acceptability of labor con-
tract datasets mentioned previously, for example, are well described by propo-
sitional rules. However, there are situations in which a more expressive form of
rule would provide a more intuitive and concise concept description, and these
are situations that involve relationships between examples such as those encoun-
tered in Section 2.2.

Suppose, to take a concrete example, we have the set of eight building blocks
of the various shapes and sizes illustrated in Figure 3.6, and we wish to learn
the concept of standing. This is a classic two-class problem with classes stand-
ing and lying. The four shaded blocks are positive (standing) examples of the
concept, and the unshaded blocks are negative (lying) examples. The only infor-

Shaded:  standing
Unshaded: lying

: ~

[ —

Figure 3.6 The shapes problem.



14

CHAPTER 3 | OUTPUT: KNOWLEDGE REPRESENTATION

Table 3.2 Training data for the shapes problem.
Width Height Sides Class
2 4 4 standing
3 6 4 standing
4 3 4 lying
7 8 3 standing
7 6 3 lying
2 9 4 standing
9 1 4 lying
10 2 3 lying

mation the learning algorithm will be given is the width, height, and number of
sides of each block. The training data is shown in Table 3.2.
A propositional rule set that might be produced for this data is:

if width > 3.5 and height < 7.0 then lying
if height > 3.5 then standing

In case you're wondering, 3.5 is chosen as the breakpoint for width because it is
halfway between the width of the thinnest lying block, namely 4, and the width
of the fattest standing block whose height is less than 7, namely 3. Also, 7.0 is
chosen as the breakpoint for height because it is halfway between the height of
the tallest lying block, namely 6, and the shortest standing block whose width
is greater than 3.5, namely 8. It is common to place numeric thresholds halfway
between the values that delimit the boundaries of a concept.

Although these two rules work well on the examples given, they are not very
good. Many new blocks would not be classified by either rule (e.g., one with
width 1 and height 2), and it is easy to devise many legitimate blocks that the
rules would not fit.

A person classifying the eight blocks would probably notice that
“standing blocks are those that are taller than they are wide.” This rule does
not compare attribute values with constants, it compares attributes with each
other:

if width > height then lying
if height > width then standing

The actual values of the height and width attributes are not important; just the
result of comparing the two. Rules of this form are called relational, because
they express relationships between attributes, rather than propositional, which
denotes a fact about just one attribute.



3.6 RULES INVOLVING RELATIONS 75

Standard relations include equality (and inequality) for nominal attributes
and less than and greater than for numeric ones. Although relational nodes
could be put into decision trees just as relational conditions can be put into
rules, schemes that accommodate relations generally use the rule rather than the
tree representation. However, most machine learning methods do not consider
relational rules because there is a considerable cost in doing so. One way of
allowing a propositional method to make use of relations is to add extra, sec-
ondary attributes that say whether two primary attributes are equal or not, or
give the difference between them if they are numeric. For example, we might
add a binary attribute is width < height? to Table 3.2. Such attributes are often
added as part of the data engineering process.

With a seemingly rather small further enhancement, the expressive
power of the relational knowledge representation can be extended very
greatly. The trick is to express rules in a way that makes the role of the instance
explicit:

if width(block) > height (block) then lying(block)
if height (block) > width(block) then standing (block)

Although this does not seem like much of an extension, it is if instances can
be decomposed into parts. For example, if a fower is a pile of blocks, one on top
of the other, then the fact that the topmost block of the tower is standing can
be expressed by:

if height (tower.top) > width(tower.top) then standing (tower.top)

Here, tower.top is used to refer to the topmost block. So far, nothing has been
gained. But if fower.rest refers to the rest of the tower, then the fact that the tower
is composed entirely of standing blocks can be expressed by the rules:

if height (tower.top) > width(tower.top) and standing (tower.rest)
then standing (tower)

The apparently minor addition of the condition standing(tower.rest) is a recur-
sive expression that will turn out to be true only if the rest of the tower is com-
posed of standing blocks. A recursive application of the same rule will test this.
Of course, it is necessary to ensure that the recursion “bottoms out” properly
by adding a further rule, such as:

if tower = empty then standing (tower.top)

With this addition, relational rules can express concepts that cannot possibly be
expressed propositionally, because the recursion can take place over arbitrarily
long lists of objects. Sets of rules such as this are called logic programs, and this
area of machine learning is called inductive logic programming. We will not be
treating it further in this book.



18

3.7

3.8

CHAPTER 3 | OUTPUT: KNOWLEDGE REPRESENTATION

Trees for numeric prediction

The kind of decision trees and rules that we have been looking at are designed
for predicting categories rather than numeric quantities. When it comes to pre-
dicting numeric quantities, as with the CPU performance data in Table 1.5, the
same kind of tree or rule representation can be used, but the leaf nodes of the
tree, or the right-hand side of the rules, would contain a numeric value that is
the average of all the training set values to which the leaf, or rule, applies.
Because statisticians use the term regression for the process of computing an
expression that predicts a numeric quantity, decision trees with averaged
numeric values at the leaves are called regression trees.

Figure 3.7(a) shows a regression equation for the CPU performance data, and
Figure 3.7(b) shows a regression tree. The leaves of the tree are numbers that
represent the average outcome for instances that reach the leaf. The tree is much
larger and more complex than the regression equation, and if we calculate the
average of the absolute values of the errors between the predicted and the actual
CPU performance measures, it turns out to be significantly less for the tree than
for the regression equation. The regression tree is more accurate because a
simple linear model poorly represents the data in this problem. However, the
tree is cuambersome and difficult to interpret because of its large size.

It is possible to combine regression equations with regression trees. Figure
3.7(c) is a tree whose leaves contain linear expressions—that is, regression equa-
tions—rather than single predicted values. This is (slightly confusingly) called
a model tree. Figure 3.7(c) contains the six linear models that belong at the six
leaves, labeled LM1 through LM6. The model tree approximates continuous
functions by linear “patches,” a more sophisticated representation than either
linear regression or regression trees. Although the model tree is smaller and
more comprehensible than the regression tree, the average error values on the
training data are lower. (However, we will see in Chapter 5 that calculating the
average error on the training set is not in general a good way of assessing
the performance of models.)

Instance-based representation

The simplest form of learning is plain memorization, or rote learning. Once a
set of training instances has been memorized, on encountering a new instance
the memory is searched for the training instance that most strongly resembles
the new one. The only problem is how to interpret “resembles”: we will explain
that shortly. First, however, note that this is a completely different way of rep-
resenting the “knowledge” extracted from a set of instances: just store the
instances themselves and operate by relating new instances whose class is



PRP =
-56.1
+0.049
+0.015
+0.006
+0.630
-0.270

MYCT
MMIN
MMAX
CACH
CHMIN
+1.46 CHMAX

64.6
(24/19.2%)

19.3
(28/8.7%)

(37/8.18%)

<4250

LM1
(65/7.32%)

75.7

133 783

37.3
(19/11.3%)

(7/3.83%)

<28000

(10/24.6%) | [(16/28.8%) (5/359%)
59.3 281 492
(24/16.9%) (11/56%) (7/53.9%)

(50/22.1%)

LM5
(21/45.5%)

LM6
(23/63.5%)

> 4250

<0.5 \(0.58.5]
LM2 LM3
(©) (26/6.37%) | | (24/14.5%)

LM1
LM2

LM3
LM4

LM5

LM6

PRP=
PRP=

PRP=
PRP=

PRP=

8.29+40.004 MMAX+2.77 CHMIN

20.3+0.004 MMIN-3.99 CHMIN
+0.946 CHMAX

38.1+0.012 MMIN

19.5+0.002 MMAX+0.698 CACH
+0.969 CHMAX

285-1.46 MYCT+1.02 CACH
-9.39 CHMIN

PRP=-65.8+0.03 MMIN-2.94 CHMIN

+4.98 CHMAX

Figure 3.7 Models for the CPU performance data: (a) linear regression, (b) regression
tree, and (c) model tree.



18

CHAPTER 3 | OUTPUT: KNOWLEDGE REPRESENTATION

unknown to existing ones whose class is known. Instead of trying to create rules,
work directly from the examples themselves. This is known as instance-based
learning. In a sense all the other learning methods are “instance-based,” too,
because we always start with a set of instances as the initial training informa-
tion. But the instance-based knowledge representation uses the instances them-
selves to represent what is learned, rather than inferring a rule set or decision
tree and storing it instead.

In instance-based learning, all the real work is done when the time comes to
classify a new instance rather than when the training set is processed. In a sense,
then, the difference between this method and the others we have seen is the time
at which the “learning” takes place. Instance-based learning is lazy, deferring the
real work as long as possible, whereas other methods are eager, producing a gen-
eralization as soon as the data has been seen. In instance-based learning, each
new instance is compared with existing ones using a distance metric, and the
closest existing instance is used to assign the class to the new one. This is called
the nearest-neighbor classification method. Sometimes more than one nearest
neighbor is used, and the majority class of the closest k neighbors (or the dis-
tance-weighted average, if the class is numeric) is assigned to the new instance.
This is termed the k-nearest-neighbor method.

Computing the distance between two examples is trivial when examples have
just one numeric attribute: it is just the difference between the two attribute
values. It is almost as straightforward when there are several numeric attributes:
generally, the standard Euclidean distance is used. However, this assumes that
the attributes are normalized and are of equal importance, and one of the main
problems in learning is to determine which are the important features.

When nominal attributes are present, it is necessary to come up with a “dis-
tance” between different values of that attribute. What are the distances between,
say, the values red, green, and blue? Usually a distance of zero is assigned if the
values are identical; otherwise, the distance is one. Thus the distance between
red and red is zero but that between red and green is one. However, it may be
desirable to use a more sophisticated representation of the attributes. For
example, with more colors one could use a numeric measure of hue in color
space, making yellow closer to orange than it is to green and ocher closer still.

Some attributes will be more important than others, and this is usually
reflected in the distance metric by some kind of attribute weighting. Deriving
suitable attribute weights from the training set is a key problem in instance-
based learning.

It may not be necessary, or desirable, to store all the training instances. For
one thing, this may make the nearest-neighbor calculation unbearably slow. For
another, it may consume unrealistic amounts of storage. Generally, some regions
of attribute space are more stable than others with regard to class, and just a



3.8 INSTANCE-BASED REPRESENTATION 79

few exemplars are needed inside stable regions. For example, you might expect
the required density of exemplars that lie well inside class boundaries to be
much less than the density that is needed near class boundaries. Deciding which
instances to save and which to discard is another key problem in instance-based
learning.

An apparent drawback to instance-based representations is that they do not
make explicit the structures that are learned. In a sense this violates the notion
of “learning” that we presented at the beginning of this book; instances do not
really “describe” the patterns in data. However, the instances combine with the
distance metric to carve out boundaries in instance space that distinguish one
class from another, and this is a kind of explicit representation of knowledge.
For example, given a single instance of each of two classes, the nearest-neigh-
bor rule effectively splits the instance space along the perpendicular bisector of
the line joining the instances. Given several instances of each class, the space is
divided by a set of lines that represent the perpendicular bisectors of selected
lines joining an instance of one class to one of another class. Figure 3.8(a) illus-
trates a nine-sided polygon that separates the filled-circle class from the open-
circle class. This polygon is implicit in the operation of the nearest-neighbor
rule.

When training instances are discarded, the result is to save just a few proto-
typical examples of each class. Figure 3.8(b) shows as dark circles only the
examples that actually get used in nearest-neighbor decisions: the others (the
light gray ones) can be discarded without affecting the result. These prototypi-
cal examples serve as a kind of explicit knowledge representation.

Some instance-based representations go further and explicitly generalize the
instances. Typically, this is accomplished by creating rectangular regions that
enclose examples of the same class. Figure 3.8(c) shows the rectangular regions
that might be produced. Unknown examples that fall within one of the rectan-
gles will be assigned the corresponding class; ones that fall outside all rectan-
gles will be subject to the usual nearest-neighbor rule. Of course this produces

o] o] O O O O
o o © o o o © o o ©
o o O O o O | [ 9o o (o] o o
o o o1 o o
o o o o
o o
°°°o°° K © o offo © ©° o, %
o) o) o [e} q| o o}
o ° o Lo s O

(@) (b) (© (d)

Figure 3.8 Different ways of partitioning the instance space.



ifl

CHAPTER 3 | OUTPUT: KNOWLEDGE REPRESENTATION

different decision boundaries from the straightforward nearest-neighbor rule,
as can be seen by superimposing the polygon in Figure 3.8(a) onto the rectan-
gles. Any part of the polygon that lies within a rectangle will be chopped off and
replaced by the rectangle’s boundary.

Rectangular generalizations in instance space are just like rules with a special
form of condition, one that tests a numeric variable against an upper and lower
bound and selects the region in between. Different dimensions of the rectangle
correspond to tests on different attributes being ANDed together. Choosing
snugly fitting rectangular regions as tests leads to much more conservative rules
than those generally produced by rule-based machine learning methods,
because for each boundary of the region, there is an actual instance that lies on
(or just inside) that boundary. Tests such as x < a (where x is an attribute value
and a is a constant) encompass an entire half-space—they apply no matter how
small x is as long as it is less than a. When doing rectangular generalization in
instance space you can afford to be conservative because if a new example is
encountered that lies outside all regions, you can fall back on the nearest-neigh-
bor metric. With rule-based methods the example cannot be classified, or
receives just a default classification, if no rules apply to it. The advantage of more
conservative rules is that, although incomplete, they may be more perspicuous
than a complete set of rules that covers all cases. Finally, ensuring that the
regions do not overlap is tantamount to ensuring that at most one rule can apply
to an example, eliminating another of the difficulties of rule-based systems—
what to do when several rules apply.

A more complex kind of generalization is to permit rectangular regions to
nest one within another. Then a region that is basically all one class can contain
an inner region of a different class, as illustrated in Figure 3.8(d). It is possible
to allow nesting within nesting so that the inner region can itself contain its own
inner region of a different class—perhaps the original class of the outer region.
This is analogous to allowing rules to have exceptions and exceptions to the
exceptions, as in Section 3.5.

It is worth pointing out a slight danger to the technique of visualizing
instance-based learning in terms of boundaries in example space: it makes the
implicit assumption that attributes are numeric rather than nominal. If the
various values that a nominal attribute can take on were laid out along a
line, generalizations involving a segment of that line would make no sense: each
test involves either one value for the attribute or all values for it (or perhaps an
arbitrary subset of values). Although you can more or less easily imagine extend-
ing the examples in Figure 3.8 to several dimensions, it is much harder to
imagine how rules involving nominal attributes will look in multidimensional
instance space. Many machine learning situations involve numerous attributes,
and our intuitions tend to lead us astray when extended to high-dimensional
spaces.



3.9  CLUSTERS 81

3.9 Clusters

When clusters rather than a classifier is learned, the output takes the form of a
diagram that shows how the instances fall into clusters. In the simplest case this
involves associating a cluster number with each instance, which might be
depicted by laying the instances out in two dimensions and partitioning the
space to show each cluster, as illustrated in Figure 3.9(a).

Some clustering algorithms allow one instance to belong to more than one
cluster, so the diagram might lay the instances out in two dimensions and draw
overlapping subsets representing each cluster—a Venn diagram. Some algo-
rithms associate instances with clusters probabilistically rather than categori-
cally. In this case, for every instance there is a probability or degree of
membership with which it belongs to each of the clusters. This is shown in
Figure 3.9(c). This particular association is meant to be a probabilistic one, so
the numbers for each example sum to one—although that is not always the
case. Other algorithms produce a hierarchical structure of clusters so that at
the top level the instance space divides into just a few clusters, each of which
divides into its own subclusters at the next level down, and so on. In this case a
diagram such as the one in Figure 3.9(d) is used, in which elements joined
together at lower levels are more tightly clustered than ones joined together at

3
0.5
0.1
0.4
0.8
0.4
0.5
0.1
0.1

SKQ +~® O N T QD
o
—

gaciedkbijfh

—
e}
—
—
o
=

Figure 3.9 Different ways of representing clusters.



62

3.10

CHAPTER 3 | OUTPUT: KNOWLEDGE REPRESENTATION

higher levels. Diagrams such as this are called dendrograms. This term means
just the same thing as tree diagrams (the Greek word dendron means “a tree”),
but in clustering the more exotic version seems to be preferred—perhaps
because biologic species are a prime application area for clustering techniques,
and ancient languages are often used for naming in biology.

Clustering is often followed by a stage in which a decision tree or rule set is
inferred that allocates each instance to the cluster in which it belongs. Then, the
clustering operation is just one step on the way to a structural description.

Further reading

Knowledge representation is a key topic in classical artificial intelligence and is
well represented by a comprehensive series of papers edited by Brachman and
Levesque (1985). However, these are about ways of representing handcrafted,
not learned knowledge, and the kind of representations that can be learned from
examples are quite rudimentary in comparison. In particular, the shortcomings
of propositional rules, which in logic are referred to as the propositional calcu-
lus, and the extra expressive power of relational rules, or the predicate calculus,
are well described in introductions to logic such as that in Chapter 2 of the book
by Genesereth and Nilsson (1987).

We mentioned the problem of dealing with conflict among different rules.
Various ways of doing this, called conflict resolution strategies, have been devel-
oped for use with rule-based programming systems. These are described in
books on rule-based programming, such as that by Brownstown et al. (1985).
Again, however, they are designed for use with handcrafted rule sets rather than
ones that have been learned. The use of hand-crafted rules with exceptions for
a large dataset has been studied by Gaines and Compton (1995), and Richards
and Compton (1998) describe their role as an alternative to classic knowledge
engineering.

Further information on the various styles of concept representation can be
found in the papers that describe machine learning methods of inferring con-
cepts from examples, and these are covered in the Further reading section of
Chapter 4 and the Discussion sections of Chapter 6.



1MS.

it Methods

Now that we’ve seen how the inputs and outputs can be represented, it’s time
to look at the learning algorithms themselves. This chapter explains the basic
ideas behind the techniques that are used in practical data mining. We will not
delve too deeply into the trickier issues—advanced versions of the algorithms,
optimizations that are possible, complications that arise in practice. These topics
are deferred to Chapter 6, where we come to grips with real implementations
of machine learning methods such as the ones included in data mining toolkits
and used for real-world applications. It is important to understand these more
advanced issues so that you know what is really going on when you analyze a
particular dataset.

In this chapter we look at the basic ideas. One of the most instructive lessons
is that simple ideas often work very well, and we strongly recommend the adop-
tion of a “simplicity-first” methodology when analyzing practical datasets. There
are many different kinds of simple structure that datasets can exhibit. In one
dataset, there might be a single attribute that does all the work and the others
may be irrelevant or redundant. In another dataset, the attributes might

83



64

4.1

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

contribute independently and equally to the final outcome. A third might have
a simple logical structure, involving just a few attributes that can be captured
by a decision tree. In a fourth, there may be a few independent rules that govern
the assignment of instances to different classes. A fifth might exhibit depend-
encies among different subsets of attributes. A sixth might involve linear
dependence among numeric attributes, where what matters is a weighted sum
of attribute values with appropriately chosen weights. In a seventh, classifica-
tions appropriate to particular regions of instance space might be governed by
the distances between the instances themselves. And in an eighth, it might be
that no class values are provided: the learning is unsupervised.

In the infinite variety of possible datasets there are many different kinds of
structure that can occur, and a data mining tool—no matter how capable—that
is looking for one class of structure may completely miss regularities of a dif-
ferent kind, regardless of how rudimentary those may be. The result is a baroque
and opaque classification structure of one kind instead of a simple, elegant,
immediately comprehensible structure of another.

Each of the eight examples of different kinds of datasets sketched previously
leads to a different machine learning method well suited to discovering it. The
sections of this chapter look at each of these structures in turn.

Inferring rudimentary rules

Here’s an easy way to find very simple classification rules from a set of instances.
Called IR for I-rule, it generates a one-level decision tree expressed in the form
of a set of rules that all test one particular attribute. 1R is a simple, cheap method
that often comes up with quite good rules for characterizing the structure in
data. It turns out that simple rules frequently achieve surprisingly high accu-
racy. Perhaps this is because the structure underlying many real-world datasets
is quite rudimentary, and just one attribute is sufficient to determine the class
of an instance quite accurately. In any event, it is always a good plan to try the
simplest things first.

The idea is this: we make rules that test a single attribute and branch accord-
ingly. Each branch corresponds to a different value of the attribute. It is obvious
what is the best classification to give each branch: use the class that occurs most
often in the training data. Then the error rate of the rules can easily be deter-
mined. Just count the errors that occur on the training data, that is, the number
of instances that do not have the majority class.

Each attribute generates a different set of rules, one rule for every value
of the attribute. Evaluate the error rate for each attribute’s rule set and choose
the best. It’s that simple! Figure 4.1 shows the algorithm in the form of
pseudocode.



4.1 INFERRING RUDIMENTARY RULES 35

For each attribute,
For each value of that attribute, make a rule as follows:
count how often each class appears
find the most frequent class
make the rule assign that class to this attribute-value.
Calculate the error rate of the rules.

Choose the rules with the smallest error rate.

Figure 4.1 Pseudocode for 1R.

Table 4.1 Evaluating the attributes in the weather data.
Attribute Rules Errors Total errors

1 outlook sunny — no 2/5 414
overcast — yes 0/4
rainy — yes 2/5

2 temperature hot — no* 2/4 5/14
mild — yes 2/6
cool — yes 1/4

3 humidity high — no 3/7 414
normal — yes 1/7

4 windy false — yes 2/8 5/14
true — no* 3/6

*A random choice was made between two equally likely outcomes.

To see the 1R method at work, consider the weather data of Table 1.2 (we will
encounter it many times again when looking at how learning algorithms work).
To classify on the final column, play, 1R considers four sets of rules, one for each
attribute. These rules are shown in Table 4.1. An asterisk indicates that a random
choice has been made between two equally likely outcomes. The number of
errors is given for each rule, along with the total number of errors for the rule
set as a whole. 1R chooses the attribute that produces rules with the smallest
number of errors—that is, the first and third rule sets. Arbitrarily breaking the
tie between these two rule sets gives:

outlook: sunny — no
overcast — yes
rainy — yes



ifi

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

We noted at the outset that the game for the weather data is unspecified.
Oddly enough, it is apparently played when it is overcast or rainy but not when
it is sunny. Perhaps it’s an indoor pursuit.

Missing values and numeric attributes

Although a very rudimentary learning method, 1R does accommodate both
missing values and numeric attributes. It deals with these in simple but effec-
tive ways. Missing is treated as just another attribute value so that, for example,
if the weather data had contained missing values for the outlook attribute, a rule
set formed on outlook would specify four possible class values, one each for
sunny, overcast, and rainy and a fourth for missing.

We can convert numeric attributes into nominal ones using a simple dis-
cretization method. First, sort the training examples according to the values of
the numeric attribute. This produces a sequence of class values. For example,
sorting the numeric version of the weather data (Table 1.3) according to the
values of temperature produces the sequence

64 65 68 69 70 71 72 72 75 75 80 81 83 &

yes no yes yes yes no no yes yes yes no yes yes no

Discretization involves partitioning this sequence by placing breakpoints in
it. One possibility is to place breakpoints wherever the class changes, producing
eight categories:

ves | no | yes yes yes | no no | yes yes yes | no | yes vyes | no

Choosing breakpoints halfway between the examples on either side places
them at 64.5, 66.5, 70.5, 72, 77.5, 80.5, and 84. However, the two instances with
value 72 cause a problem because they have the same value of temperature but
fall into different classes. The simplest fix is to move the breakpoint at 72 up
one example, to 73.5, producing a mixed partition in which no is the majority
class.

A more serious problem is that this procedure tends to form a large number
of categories. The 1R method will naturally gravitate toward choosing an attri-
bute that splits into many categories, because this will partition the dataset into
many classes, making it more likely that instances will have the same class as the
majority in their partition. In fact, the limiting case is an attribute that has a
different value for each instance—that is, an identification code attribute that
pinpoints instances uniquely—and this will yield a zero error rate on the train-
ing set because each partition contains just one instance. Of course, highly
branching attributes do not usually perform well on test examples; indeed, the
identification code attribute will never predict any examples outside the training
set correctly. This phenomenon is known as overfittingg we have already



4.1 INFERRING RUDIMENTARY RULES H]

described overfitting-avoidance bias in Chapter 1 (page 35), and we will
encounter this problem repeatedly in subsequent chapters.

For IR, overfitting is likely to occur whenever an attribute has a large
number of possible values. Consequently, when discretizing a numeric attrib-
ute a rule is adopted that dictates a minimum number of examples of the
majority class in each partition. Suppose that minimum is set at three. This
eliminates all but two of the preceding partitions. Instead, the partitioning
process begins

ves no yes yes | yes. ..

ensuring that there are three occurrences of yes, the majority class, in the first
partition. However, because the next example is also yes, we lose nothing by
including that in the first partition, too. This leads to a new division:

yes no yes yes yes | no no yes yes yes | no yes yes no

where each partition contains at least three instances of the majority class, except
the last one, which will usually have less. Partition boundaries always fall
between examples of different classes.

Whenever adjacent partitions have the same majority class, as do the first two
partitions above, they can be merged together without affecting the meaning of
the rule sets. Thus the final discretization is

yesS no yes yes yes no no yes yes yes | no yes yes no
which leads to the rule set

temperature: < 77.5 — yes
> 77.5 = no

The second rule involved an arbitrary choice; as it happens, no was chosen. If
we had chosen yes instead, there would be no need for any breakpoint at all—
and as this example illustrates, it might be better to use the adjacent categories
to help to break ties. In fact this rule generates five errors on the training set
and so is less effective than the preceding rule for outlook. However, the same
procedure leads to this rule for humidity:

humidity: < 82.5 — vyes
> 82.5 and £ 95.5 — no
>

95.5 — yes

This generates only three errors on the training set and is the best “1-rule” for
the data in Table 1.3.

Finally, if a numeric attribute has missing values, an additional category is
created for them, and the preceding discretization procedure is applied just to
the instances for which the attribute’s value is defined.



ifi

4.2

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

Discussion

In a seminal paper titled “Very simple classification rules perform well on most
commonly used datasets” (Holte 1993), a comprehensive study of the perform-
ance of the 1R procedure was reported on 16 datasets frequently used by
machine learning researchers to evaluate their algorithms. Throughout, the
study used cross-validation, an evaluation technique that we will explain in
Chapter 5, to ensure that the results were representative of what independent
test sets would yield. After some experimentation, the minimum number of
examples in each partition of a numeric attribute was set at six, not three as
used for the preceding illustration.

Surprisingly, despite its simplicity 1R did astonishingly—even embarrass-
ingly—well in comparison with state-of-the-art learning methods, and the rules
it produced turned out to be just a few percentage points less accurate, on almost
all of the datasets, than the decision trees produced by a state-of-the-art deci-
sion tree induction scheme. These trees were, in general, considerably larger
than 1R’s rules. Rules that test a single attribute are often a viable alternative to
more complex structures, and this strongly encourages a simplicity-first meth-
odology in which the baseline performance is established using simple, rudi-
mentary techniques before progressing to more sophisticated learning methods,
which inevitably generate output that is harder for people to interpret.

The 1R procedure learns a one-level decision tree whose leaves represent the
various different classes. A slightly more expressive technique is to use a differ-
ent rule for each class. Each rule is a conjunction of tests, one for each attribute.
For numeric attributes the test checks whether the value lies within a given inter-
val; for nominal ones it checks whether it is in a certain subset of that attribute’s
values. These two types of tests—intervals and subset—are learned from the
training data pertaining to each class. For a numeric attribute, the endpoints of
the interval are the minimum and maximum values that occur in the training
data for that class. For a nominal one, the subset contains just those values that
occur for that attribute in the training data for the class. Rules representing dif-
ferent classes usually overlap, and at prediction time the one with the most
matching tests is predicted. This simple technique often gives a useful first
impression of a dataset. It is extremely fast and can be applied to very large
quantities of data.

Statistical modeling

The 1R method uses a single attribute as the basis for its decisions and chooses
the one that works best. Another simple technique is to use all attributes and
allow them to make contributions to the decision that are equally important and
independent of one another, given the class. This is unrealistic, of course: what



4.2 STATISTICAL MODELING 89

Table 4.2 The weather data with counts and probabilities.
Outlook Temperature Humidity Windy Play

yes no yes  no yes  no yes no yes no
sunny 2 3 hot 2 2 high 3 4 false 6 2 9 5
overcast 4 0 mild 4 2 normal 6 1 true 3 3
rainy 3 2 cool 3 1
sunny 2/9 35 hot 2/9 2/5 high 39 4/5 false 6/9 2/5 914 514
overcast 4/9 0/5 mild 49 2/5 normal 6/9 1/5 true 39 35

rainy

399 2/5 cool 39 15

Table 4.3 A new day.

Outlook Temperature Humidity Windy Play

sunny cool high true ?

makes real-life datasets interesting is that the attributes are certainly not equally
important or independent. But it leads to a simple scheme that again works sur-
prisingly well in practice.

Table 4.2 shows a summary of the weather data obtained by counting how
many times each attribute—value pair occurs with each value (yes and no) for
play. For example, you can see from Table 1.2 that outlook is sunny for five exam-
ples, two of which have play = yes and three of which have play = no. The cells
in the first row of the new table simply count these occurrences for all possible
values of each attribute, and the play figure in the final column counts the total
number of occurrences of yes and no. In the lower part of the table, we rewrote
the same information in the form of fractions, or observed probabilities. For
example, of the nine days that play is yes, outlook is sunny for two, yielding a
fraction of 2/9. For play the fractions are different: they are the proportion of
days that play is yes and no, respectively.

Now suppose we encounter a new example with the values that are shown in
Table 4.3. We treat the five features in Table 4.2—outlook, temperature, humid-
ity, windy, and the overall likelihood that play is yes or no—as equally impor-
tant, independent pieces of evidence and multiply the corresponding fractions.
Looking at the outcome yes gives:

likelihood of yes = 2/9 x 3/9 x 3/9x 3/9x 9/14 = 0.0053.

The fractions are taken from the yes entries in the table according to the values
of the attributes for the new day, and the final 9/14 is the overall fraction



90

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

representing the proportion of days on which play is yes. A similar calculation
for the outcome no leads to

likelihood of o = 3/5x 1/5 x 4/5 x 3/5 x 5/14 = 0.0206.

This indicates that for the new day, no is more likely than yes—four times more
likely. The numbers can be turned into probabilities by normalizing them so
that they sum to 1:

- 0.0053
Probability of yes = ———————— =20.5%,
0.0053+0.0206
0.0206
Probability of no = —————————=79.5%.
0.0053+0.0206

This simple and intuitive method is based on Bayes’s rule of conditional prob-
ability. Bayes’s rule says that if you have a hypothesis H and evidence E that bears
on that hypothesis, then

Pr[E|H]Pr[H]
Pr[E]

We use the notation that Pr[A] denotes the probability of an event A and that
Pr[A|B] denotes the probability of A conditional on another event B. The
hypothesis H is that play will be, say, yes, and Pr[H|E] is going to turn out to be
20.5%, just as determined previously. The evidence E is the particular combi-
nation of attribute values for the new day, outlook = sunny, temperature = cool,
humidity = high, and windy = true. Let’s call these four pieces of evidence E,, E,,
E;, and E,, respectively. Assuming that these pieces of evidence are independent
(given the class), their combined probability is obtained by multiplying the
probabilities:

Pr[H|E] =

Pr|E,|yes| X Pr| E,|yes| X Pr| E;|yes| X Pr| E,|yes] X Pr| yes
Pr[ yes|E] = [E,lyes] X Pr[E,|yes] PE[El]y 1X Pr[E,|yes] x Prl yes]

Don’t worry about the denominator: we will ignore it and eliminate it in the
final normalizing step when we make the probabilities of yes and no sum to 1,
just as we did previously. The Pr[yes] at the end is the probability of a yes
outcome without knowing any of the evidence E, that is, without knowing any-
thing about the particular day referenced—it’s called the prior probability of the
hypothesis H. In this case, it’s just 9/14, because 9 of the 14 training examples
had a yes value for play. Substituting the fractions in Table 4.2 for the appro-
priate evidence probabilities leads to

2/9%3/9x3/9x3/9%x9/14

Pr[yes|E] = PrlE]

b



4.2 STATISTICAL MODELING 91

just as we calculated previously. Again, the Pr[E] in the denominator will dis-
appear when we normalize.

This method goes by the name of Naive Bayes, because it’s based on Bayes’s
rule and “naively” assumes independence—it is only valid to multiply proba-
bilities when the events are independent. The assumption that attributes are
independent (given the class) in real life certainly is a simplistic one. But despite
the disparaging name, Naive Bayes works very well when tested on actual
datasets, particularly when combined with some of the attribute selection pro-
cedures introduced in Chapter 7 that eliminate redundant, and hence nonin-
dependent, attributes.

One thing that can go wrong with Naive Bayes is that if a particular attribute
value does not occur in the training set in conjunction with every class value,
things go badly awry. Suppose in the example that the training data was differ-
ent and the attribute value outlook = sunny had always been associated with
the outcome no. Then the probability of outlook = sunny given a yes, that is,
Pr[outlook = sunny | yes], would be zero, and because the other probabilities are
multiplied by this the final probability of yes would be zero no matter how large
they were. Probabilities that are zero hold a veto over the other ones. This is not
a good idea. But the bug is easily fixed by minor adjustments to the method of
calculating probabilities from frequencies.

For example, the upper part of Table 4.2 shows that for play = yes, outlook is
sunny for two examples, overcast for four, and rainy for three, and the lower part
gives these events probabilities of 2/9, 4/9, and 3/9, respectively. Instead, we
could add 1 to each numerator and compensate by adding 3 to the denomina-
tor, giving probabilities of 3/12, 5/12, and 4/12, respectively. This will ensure that
an attribute value that occurs zero times receives a probability which is nonzero,
albeit small. The strategy of adding 1 to each count is a standard technique called
the Laplace estimator after the great eighteenth-century French mathematician
Pierre Laplace. Although it works well in practice, there is no particular reason
for adding 1 to the counts: we could instead choose a small constant i and use

2+”/3,4+“/3,and 3+u/3_
9+u  9+u 9+u

The value of W, which was set to 3, effectively provides a weight that determines
how influential the a priori values of 1/3, 1/3, and 1/3 are for each of the three
possible attribute values. A large W says that these priors are very important com-
pared with the new evidence coming in from the training set, whereas a small
one gives them less influence. Finally, there is no particular reason for dividing
W into three equal parts in the numerators: we could use

24pp A+pp, o 3+,
9+ " 9+ 9+



§2

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

instead, where p,, p,, and p; sum to 1. Effectively, these three numbers are a priori
probabilities of the values of the outlook attribute being sunny, overcast, and
rainy, respectively.

This is now a fully Bayesian formulation where prior probabilities have been
assigned to everything in sight. It has the advantage of being completely rigor-
ous, but the disadvantage that it is not usually clear just how these prior prob-
abilities should be assigned. In practice, the prior probabilities make little
difference provided that there are a reasonable number of training instances,
and people generally just estimate frequencies using the Laplace estimator by
initializing all counts to one instead of to zero.

Missing values and numeric attributes

One of the really nice things about the Bayesian formulation is that missing
values are no problem at all. For example, if the value of outlook were missing
in the example of Table 4.3, the calculation would simply omit this attribute,
yielding

likelihood of yes = 3/9 x 3/9 x 3/9 x 9/14 = 0.0238
likelihood of no=1/5 x 4/5x 3/5x 5/14 = 0.0343.

These two numbers are individually a lot higher than they were before, because
one of the fractions is missing. But that’s not a problem because a fraction is
missing in both cases, and these likelihoods are subject to a further normal-
ization process. This yields probabilities for yes and no of 41% and 59%,
respectively.

If a value is missing in a training instance, it is simply not included in the
frequency counts, and the probability ratios are based on the number of values
that actually occur rather than on the total number of instances.

Numeric values are usually handled by assuming that they have a “normal”
or “Gaussian” probability distribution. Table 4.4 gives a summary of the weather
data with numeric features from Table 1.3. For nominal attributes, we calcu-
lated counts as before, and for numeric ones we simply listed the values that
occur. Then, whereas we normalized the counts for the nominal attributes into
probabilities, we calculated the mean and standard deviation for each class
and each numeric attribute. Thus the mean value of temperature over the yes
instances is 73, and its standard deviation is 6.2. The mean is simply the average
of the preceding values, that is, the sum divided by the number of values. The
standard deviation is the square root of the sample variance, which we can cal-
culate as follows: subtract the mean from each value, square the result, sum them
together, and then divide by one less than the number of values. After we have
found this sample variance, find its square root to determine the standard devi-
ation. This is the standard way of calculating mean and standard deviation of a



4.2 STATISTICAL MODELING 93

Table 4.4 The numeric weather data with summary statistics.
Outlook Temperature Humidity Windy Play
yes no yes no yes  no yes no yes no
sunny 2 3 83 85 86 85 false 6 2 9 5
overcast 4 0 70 80 96 90 true 3 3
rainy 3 2 68 65 80 70
64 72 65 95
69 71 70 9
75 80
75 70
72 90
81 75
sunny 2/9 3/5 mean 73 746 mean 791 862 false 6/9 2/5 9/14 5/14
overcast 4/9 0/5 std.dev. 62 79 std.dev. 102 97 true 3/9 3/5
rainy 3/9 2/5

set of numbers (the “one less than” is to do with the number of degrees of
freedom in the sample, a statistical notion that we don’t want to get into here).
The probability density function for a normal distribution with mean @ and
standard deviation ¢ is given by the rather formidable expression:
f(x)= ! e 2 .
V2ro

But fear not! All this means is that if we are considering a yes outcome when
temperature has a value, say, of 66, we just need to plug x = 66, yt=73,and o=
6.2 into the formula. So the value of the probability density function is

(66-73)%

e 262 =0.0340.

temperature = 66 |yes) = ———
f(temp lyes) ==
By the same token, the probability density of a yes outcome when humidity has
value, say, of 90 is calculated in the same way:

f (humidity = 90| yes) = 0.0221.

The probability density function for an event is very closely related to its prob-
ability. However, it is not quite the same thing. If temperature is a continuous
scale, the probability of the temperature being exactly 66—or exactly any other
value, such as 63.14159262—is zero. The real meaning of the density function
flx) is that the probability that the quantity lies within a small region around x,
say, between x — /2 and x + €/2, is € f(x). What we have written above is correct



94

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

if temperature is measured to the nearest degree and humidity is measured to
the nearest percentage point. You might think we ought to factor in the accu-
racy figure € when using these probabilities, but that’s not necessary. The same
€ would appear in both the yes and no likelihoods that follow and cancel out
when the probabilities were calculated.

Using these probabilities for the new day in Table 4.5 yields

likelihood of yes = 2/9 % 0.0340 x 0.0221x 3/9 X 9/14 = 0.000036,
likelihood of 0 = 3/5% 0.0221x 0.0381x 3/5x 5/14 = 0.000108;

which leads to probabilities
0.000036

Probability of yes = = 25.0%,
0.000036+0.000108
0.000108
Probability of no = =75.0%.
0.000036+0.000108

These figures are very close to the probabilities calculated earlier for the new
day in Table 4.3, because the temperature and humidity values of 66 and 90 yield
similar probabilities to the cool and high values used before.

The normal-distribution assumption makes it easy to extend the Naive Bayes
classifier to deal with numeric attributes. If the values of any numeric attributes
are missing, the mean and standard deviation calculations are based only on the
ones that are present.

Bayesian models for document classification

One important domain for machine learning is document classification, in
which each instance represents a document and the instance’s class is the doc-
ument’s topic. Documents might be news items and the classes might be domes-
tic news, overseas news, financial news, and sport. Documents are characterized
by the words that appear in them, and one way to apply machine learning to
document classification is to treat the presence or absence of each word as
a Boolean attribute. Naive Bayes is a popular technique for this application
because it is very fast and quite accurate.

However, this does not take into account the number of occurrences of each
word, which is potentially useful information when determining the category

Table 4.5 Another new day.

Outlook Temperature Humidity Windy Play

sunny 66 90 true ?




4.2 STATISTICAL MODELING 95

of a document. Instead, a document can be viewed as a bag of words—a set that
contains all the words in the document, with multiple occurrences of a word
appearing multiple times (technically, a set includes each of its members just
once, whereas a bag can have repeated elements). Word frequencies can be
accommodated by applying a modified form of Naive Bayes that is sometimes
described as multinominal Naive Bayes.

Suppose 1y, #,, . . ., i is the number of times word i occurs in the document,
and P,, P,, . .., P, is the probability of obtaining word i when sampling from
all the documents in category H. Assume that the probability is independent of
the word’s context and position in the document. These assumptions lead to a
multinomial distribution for document probabilities. For this distribution, the
probability of a document E given its class H—in other words, the formula for
computing the probability Pr[E|H] in Bayes’s rule—is

k Pf'i
Pr[ElH]zN!xH’—'
i=1 1

where N=n,+n,+ ...+ n,is the number of words in the document. The reason
for the factorials is to account for the fact that the ordering of the occurrences
of each word is immaterial according to the bag-of-words model. P; is estimated
by computing the relative frequency of word i in the text of all training docu-
ments pertaining to category H. In reality there should be a further term that
gives the probability that the model for category H generates a document whose
length is the same as the length of E (that is why we use the symbol = instead
of =), but it is common to assume that this is the same for all classes and hence
can be dropped.

For example, suppose there are only the two words, yellow and blue, in the
vocabulary, and a particular document class H has Pr[yellow|H] = 75% and
Pr[bluelH] = 25% (you might call H the class of yellowish green documents).
Suppose E is the document blue yellow blue with a length of N =3 words. There
are four possible bags of three words. One is {yellow yellow yellow}, and its prob-
ability according to the preceding formula is

0.75° " 025" 27
3! 0! 64
The other three, with their probabilities, are

Pr{{blue blue blue} |H] = 6i4

Pr[{yellow yellow yellow}|H]= 3! X

Pr[{yellow yellow blue} | H] = %

Pr{{yellow blue blue} | H] = %



ol

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

Here, E corresponds to the last case (recall that in a bag of words the order is
immaterial); thus its probability of being generated by the yellowish green doc-
ument model is 9/64, or 14%. Suppose another class, very bluish green docu-
ments (call it H"), has Pr[yellow | H'] = 10%, Pr[blue | H'] = 90%. The probability
that E is generated by this model is 24%.

If these are the only two classes, does that mean that E is in the very bluish
green document class? Not necessarily. Bayes’s rule, given earlier, says that you
have to take into account the prior probability of each hypothesis. If you know
that in fact very bluish green documents are twice as rare as yellowish green ones,
this would be just sufficient to outweigh the preceding 14% to 24% disparity
and tip the balance in favor of the yellowish green class.

The factorials in the preceding probability formula don’t actually need to be
computed because—being the same for every class—they drop out in the nor-
malization process anyway. However, the formula still involves multiplying
together many small probabilities, which soon yields extremely small numbers
that cause underflow on large documents. The problem can be avoided by using
logarithms of the probabilities instead of the probabilities themselves.

In the multinomial Naive Bayes formulation a document’s class is determined
not just by the words that occur in it but also by the number of times they occur.
In general it performs better than the ordinary Naive Bayes model for docu-
ment classification, particularly for large dictionary sizes.

Discussion

Naive Bayes gives a simple approach, with clear semantics, to representing,
using, and learning probabilistic knowledge. Impressive results can be achieved
using it. It has often been shown that Naive Bayes rivals, and indeed outper-
forms, more sophisticated classifiers on many datasets. The moral is, always try
the simple things first. Repeatedly in machine learning people have eventually,
after an extended struggle, obtained good results using sophisticated learning
methods only to discover years later that simple methods such as 1R and Naive
Bayes do just as well—or even better.

There are many datasets for which Naive Bayes does not do so well, however,
and it is easy to see why. Because attributes are treated as though they were com-
pletely independent, the addition of redundant ones skews the learning process.
As an extreme example, if you were to include a new attribute with the same
values as temperature to the weather data, the effect of the temperature attri-
bute would be multiplied: all of its probabilities would be squared, giving it a
great deal more influence in the decision. If you were to add 10 such attributes,
then the decisions would effectively be made on temperature alone. Dependen-
cies between attributes inevitably reduce the power of Naive Bayes to discern
what is going on. They can, however, be ameliorated by using a subset of the



4.3

4.3 DIVIDE-AND-CONQUER: CONSTRUCTING DECISION TREES 97

attributes in the decision procedure, making a careful selection of which ones
to use. Chapter 7 shows how.

The normal-distribution assumption for numeric attributes is another
restriction on Naive Bayes as we have formulated it here. Many features simply
aren’t normally distributed. However, there is nothing to prevent us from using
other distributions for the numeric attributes: there is nothing magic about the
normal distribution. If you know that a particular attribute is likely to follow
some other distribution, standard estimation procedures for that distribution
can be used instead. If you suspect it isn’t normal but don’t know the actual
distribution, there are procedures for “kernel density estimation” that do not
assume any particular distribution for the attribute values. Another possibility
is simply to discretize the data first.

Divide-and-conquer: Constructing decision trees

The problem of constructing a decision tree can be expressed recursively. First,
select an attribute to place at the root node and make one branch for each pos-
sible value. This splits up the example set into subsets, one for every value of
the attribute. Now the process can be repeated recursively for each branch, using
only those instances that actually reach the branch. If at any time all instances
at a node have the same classification, stop developing that part of the tree.

The only thing left to decide is how to determine which attribute to split on,
given a set of examples with different classes. Consider (again!) the weather data.
There are four possibilities for each split, and at the top level they produce trees
such as those in Figure 4.2. Which is the best choice? The number of yes and no
classes are shown at the leaves. Any leaf with only one class—yes or no—will
not have to be split further, and the recursive process down that branch will ter-
minate. Because we seek small trees, we would like this to happen as soon as
possible. If we had a measure of the purity of each node, we could choose the
attribute that produces the purest daughter nodes. Take a moment to look at
Figure 4.2 and ponder which attribute you think is the best choice.

The measure of purity that we will use is called the information and is meas-
ured in units called bits. Associated with a node of the tree, it represents the
expected amount of information that would be needed to specify whether a new
instance should be classified yes or no, given that the example reached that node.
Unlike the bits in computer memory, the expected amount of information
usually involves fractions of a bit—and is often less than one! We calculate it
based on the number of yes and no classes at the node; we will look at the details
of the calculation shortly. But first let’s see how it’s used. When evaluating the
first tree in Figure 4.2, the numbers of yes and no classes at the leaf nodes are
[2,3], [4,0], and [3,2], respectively, and the information values of these nodes are:



HH CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

temperature

sunny rainy hot cool

overcast

yes yes yes yes yes yes
yes yes yes yes yes yes
no yes yes no yes yes
no yes no no yes no
no no no

(a) (b) Mo
high normal false true
yes yes yes yes
yes yes yes yes
yes yes yes yes
no yes yes no
no yes yes no
no yes yes no
no no no

(© e

(d)
Figure 4.2 Tree stumps for the weather data.

info([2,3]) = 0.971 bits
info([4,0]) = 0.0 bits
info([3,2]) = 0.971 bits
We can calculate the average information value of these, taking into account the

number of instances that go down each branch—five down the first and third
and four down the second:

info([2,3],[4,0],[3,2]) = (5/14) X 0.971+(4/14) X 0+(5/14) X 0.971 = 0.693 bits.

This average represents the amount of information that we expect would be nec-
essary to specify the class of a new instance, given the tree structure in Figure
4.2(a).



4.3 DIVIDE-AND-CONQUER: CONSTRUCTING DECISION TREES gg

Before we created any of the nascent tree structures in Figure 4.2, the train-
ing examples at the root comprised nine yes and five no nodes, corresponding
to an information value of

info([9,5]) = 0.940 bits.
Thus the tree in Figure 4.2(a) is responsible for an information gain of
gain(outlook) = info([9,5]) —info([2,3],[4,0], [3,2]) = 0.940 — 0.693 = 0.247 bits,

which can be interpreted as the informational value of creating a branch on the
outlook attribute.

The way forward is clear. We calculate the information gain for each attri-
bute and choose the one that gains the most information to split on. In the sit-
uation of Figure 4.2,

gain(outlook) = 0.247 bits
gain(temperature) = 0.029 bits
gain(humidity) = 0.152 bits
gain(windy) = 0.048 bits,

so we select outlook as the splitting attribute at the root of the tree. Hopefully
this accords with your intuition as the best one to select. It is the only choice
for which one daughter node is completely pure, and this gives it a considerable
advantage over the other attributes. Humidity is the next best choice because it
produces a larger daughter node that is almost completely pure.

Then we continue, recursively. Figure 4.3 shows the possibilities for a further
branch at the node reached when outlook is sunny. Clearly, a further split on
outlook will produce nothing new, so we only consider the other three attributes.
The information gain for each turns out to be

gain(temperature) = 0.571 bits
gain(humidity) = 0.971bits
gain(windy) = 0.020 bits,

so we select humidity as the splitting attribute at this point. There is no need to
split these nodes any further, so this branch is finished.

Continued application of the same idea leads to the decision tree of Figure
4.4 for the weather data. Ideally, the process terminates when all leaf nodes are
pure, that is, when they contain instances that all have the same classification.
However, it might not be possible to reach this happy situation because there is
nothing to stop the training set containing two examples with identical sets of
attributes but different classes. Consequently, we stop when the data cannot be
split any further.



100

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

sunny sunny
high normal
no yes
no yes
no
(a)
(b)
sunny
false true
yes yes
yes no
no
no

(©
Figure 4.3 Expanded tree stumps for the weather data.

Calculating information

Now it is time to explain how to calculate the information measure that is used
as a basis for evaluating different splits. We describe the basic idea in this section,
then in the next we examine a correction that is usually made to counter a bias
toward selecting splits on attributes with large numbers of possible values.

Before examining the detailed formula for calculating the amount of infor-
mation required to specify the class of an example given that it reaches a tree
node with a certain number of yes’s and no’s, consider first the kind of proper-
ties we would expect this quantity to have:



43  DIVIDE-AND-CONQUER: CONSTRUCTING DECISION TREES 101

no yes yes no

Figure 4.4 Decision tree for the weather data.

1. When the number of either yes’s or no’s is zero, the information is
zero.

2. When the number of yes’s and no’s is equal, the information reaches a
maximum.

Moreover, the measure should be applicable to multiclass situations, not just to
two-class ones.

The information measure relates to the amount of information obtained by
making a decision, and a more subtle property of information can be derived
by considering the nature of decisions. Decisions can be made in a single stage,
or they can be made in several stages, and the amount of information involved
is the same in both cases. For example, the decision involved in

info([2,3,4])

can be made in two stages. First decide whether it’s the first case or one of the
other two cases:

info([2,7])
and then decide which of the other two cases it is:
info([3,4])

In some cases the second decision will not need to be made, namely, when
the decision turns out to be the first one. Taking this into account leads to the
equation

info([2,3,4]) = info([2,7])+(7/9) x info([3,4]).



102

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

Of course, there is nothing special about these particular numbers, and a similar
relationship must hold regardless of the actual values. Thus we can add a further
criterion to the preceding list:

3. The information must obey the multistage property illustrated previously.

Remarkably, it turns out that there is only one function that satisfies all these
properties, and it is known as the information value or entropy:

entropy(py, pas-.-»p,)=—pilogp,— p,logp,...— p,logp,

The reason for the minus signs is that logarithms of the fractions py, p, . . ., p,
are negative, so the entropy is actually positive. Usually the logarithms are
expressed in base 2, then the entropy is in units called bits—just the usual kind
of bits used with computers.

The arguments py, p,, . . . of the entropy formula are expressed as fractions
that add up to one, so that, for example,

info([2,3,4]) = entropy(2/9,3/9,4/9).

Thus the multistage decision property can be written in general as

q r
entropy(p,q,r) = entropy(p,q+1)+(q+r) - entropy ,
q+r qg+r

where p+qg+r=1.
Because of the way the log function works, you can calculate the information
measure without having to work out the individual fractions:

info([2,3,4]) = —2/9 x 10g2/9—3/9 x log3/9—4/9 x log 4/9
=[-2log2—3log3—4log4+9log9]/9.
This is the way that the information measure is usually calculated in

practice. So the information value for the first leaf node of the first tree in Figure
4.2 is

info([2,3]) = —2/5x log2/5—3/5x log3/5 = 0.971 bits,

as stated on page 98.

Highly branching attributes

When some attributes have a large number of possible values, giving rise to a
multiway branch with many child nodes, a problem arises with the information
gain calculation. The problem can best be appreciated in the extreme case when
an attribute has a different value for each instance in the dataset—as, for
example, an identification code attribute might.



43  DIVIDE-AND-CONQUER: CONSTRUCTING DECISION TREES 103

Table 4.6 The weather data with identification codes.
ID code Outlook Temperature Humidity Windy Play
a sunny hot high false no
b sunny hot high true no
c overcast hot high false yes
d rainy mild high false yes
e rainy cool normal false yes
f rainy cool normal true no
g overcast cool normal true yes
h sunny mild high false no
i sunny cool normal false yes
j rainy mild normal false yes
k sunny mild normal true yes
I overcast mild high true yes
m overcast hot normal false yes
n rainy mild high true no

no no yes yes no

Figure 4.5 Tree stump for the ID code attribute.

Table 4.6 gives the weather data with this extra attribute. Branching on ID
code produces the tree stump in Figure 4.5. The information required to specify
the class given the value of this attribute is

info([0,1]) + info([0,1]) + info([1,0]) +.. . + info([1,0]) + info([ 0, 1]),

which is zero because each of the 14 terms is zero. This is not surprising: the ID
code attribute identifies the instance, which determines the class without any
ambiguity—just as Table 4.6 shows. Consequently, the information gain of this
attribute is just the information at the root, info([9,5]) = 0.940 bits. This is
greater than the information gain of any other attribute, and so ID code will
inevitably be chosen as the splitting attribute. But branching on the identifica-
tion code is no good for predicting the class of unknown instances and tells
nothing about the structure of the decision, which after all are the twin goals of
machine learning.



104

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

The overall effect is that the information gain measure tends to prefer attri-
butes with large numbers of possible values. To compensate for this, a modifi-
cation of the measure called the gain ratio is widely used. The gain ratio is
derived by taking into account the number and size of daughter nodes into
which an attribute splits the dataset, disregarding any information about the
class. In the situation shown in Figure 4.5, all counts have a value of 1, so the
information value of the split is

info([1,1,...,1])=—1/14x log1/14 x 14,

because the same fraction, 1/14, appears 14 times. This amounts to log 14, or
3.807 bits, which is a very high value. This is because the information value of
a split is the number of bits needed to determine to which branch each instance
is assigned, and the more branches there are, the greater this value is. The gain
ratio is calculated by dividing the original information gain, 0.940 in this case,
by the information value of the attribute, 3.807—yielding a gain ratio value of
0.247 for the ID code attribute.

Returning to the tree stumps for the weather data in Figure 4.2, outlook splits
the dataset into three subsets of size 5, 4, and 5 and thus has an intrinsic infor-
mation value of

info([5,4,5]) =1.577

without paying any attention to the classes involved in the subsets. As we have
seen, this intrinsic information value is higher for a more highly branching
attribute such as the hypothesized ID code. Again we can correct the informa-
tion gain by dividing by the intrinsic information value to get the gain ratio.
The results of these calculations for the tree stumps of Figure 4.2 are sum-
marized in Table 4.7. Outlook still comes out on top, but humidity is now a much
closer contender because it splits the data into two subsets instead of three. In
this particular example, the hypothetical ID code attribute, with a gain ratio of
0.247, would still be preferred to any of these four. However, its advantage is

Table 4.7 Gain ratio calculations for the tree stumps of Figure 4.2.
Outlook Temperature Humidity Windy
info: 0.693 info: 0.911 info: 0.788 info: 0.892
gain: 0.940— 0.247  gain: 0.940- 0.029  gain: 0.940- 0.152  gain: 0.940- 0.048
0.693 0911 0.788 0.892
split info: 1.577 split info: 1.557 split info: 1.000 split info: 0.985
info([5,4,5]) info([4,6,4]) info ([7,7]) info([8,6])
gain ratio: 0.157 gain ratio: 0.019 gain ratio: 0.152 gain ratio: 0.049

0.247/1.577 0.029/1.557 0.152/1 0.048/0.985




44

4.4  COVERING ALGORITHMS: CONSTRUCTING RULES 105

greatly reduced. In practical implementations, we can use an ad hoc test to guard
against splitting on such a useless attribute.

Unfortunately, in some situations the gain ratio modification overcompen-
sates and can lead to preferring an attribute just because its intrinsic informa-
tion is much lower than that for the other attributes. A standard fix is to choose
the attribute that maximizes the gain ratio, provided that the information gain
for that attribute is at least as great as the average information gain for all the
attributes examined.

Discussion

The divide-and-conquer approach to decision tree induction, sometimes called
top-down induction of decision trees, was developed and refined over many years
by J. Ross Quinlan of the University of Sydney, Australia. Although others have
worked on similar methods, Quinlan’s research has always been at the very fore-
front of decision tree induction. The method that has been described using the
information gain criterion is essentially the same as one known as ID3. The use
of the gain ratio was one of many improvements that were made to ID3 over
several years; Quinlan described it as robust under a wide variety of circum-
stances. Although a robust and practical solution, it sacrifices some of the ele-
gance and clean theoretical motivation of the information gain criterion.

A series of improvements to ID3 culminated in a practical and influential
system for decision tree induction called C4.5. These improvements include
methods for dealing with numeric attributes, missing values, noisy data, and
generating rules from trees, and they are described in Section 6.1.

Covering algorithms: Constructing rules

As we have seen, decision tree algorithms are based on a divide-and-conquer
approach to the classification problem. They work from the top down, seeking
at each stage an attribute to split on that best separates the classes; then recur-
sively processing the subproblems that result from the split. This strategy
generates a decision tree, which can if necessary be converted into a set of clas-
sification rules—although if it is to produce effective rules, the conversion is not
trivial.

An alternative approach is to take each class in turn and seek a way of cov-
ering all instances in it, at the same time excluding instances not in the class.
This is called a covering approach because at each stage you identify a rule that
“covers” some of the instances. By its very nature, this covering approach leads
to a set of rules rather than to a decision tree.

The covering method can readily be visualized in a two-dimensional space
of instances as shown in Figure 4.6(a). We first make a rule covering the a’s. For



106

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

A /
Yy y
y 26

(@)
no yes
DEED
no yes
b a

(b)
Figure 4.6 Covering algorithm: (a) covering the instances and (b) the decision tree for
the same problem.

the first test in the rule, split the space vertically as shown in the center picture.
This gives the beginnings of a rule:

If x > 1.2 then class = a

However, the rule covers many b’s as well as a’s, so a new test is added to the
rule by further splitting the space horizontally as shown in the third diagram:

If x> 1.2 and y > 2.6 then class = a

This gives a rule covering all but one of the a’s. It’s probably appropriate to leave
it at that, but if it were felt necessary to cover the final a, another rule would be
necessary—perhaps

If x > 1.4 and y < 2.4 then class = a
The same procedure leads to two rules covering the b’s:

If x < 1.2 then class = b
If x > 1.2 and v £ 2.6 then class = b



4.4  COVERING ALGORITHMS: CONSTRUCTING RULES 107

Again, one a is erroneously covered by these rules. If it were necessary to exclude
it, more tests would have to be added to the second rule, and additional rules
would need to be introduced to cover the b’s that these new tests exclude.

Rules versus trees

A top-down divide-and-conquer algorithm operates on the same data in a
manner that is, at least superficially, quite similar to a covering algorithm. It
might first split the dataset using the x attribute and would probably end up
splitting it at the same place, x = 1.2. However, whereas the covering algorithm
is concerned only with covering a single class, the division would take both
classes into account, because divide-and-conquer algorithms create a single
concept description that applies to all classes. The second split might also be at
the same place, y = 2.6, leading to the decision tree in Figure 4.6(b). This tree
corresponds exactly to the set of rules, and in this case there is no difference in
effect between the covering and the divide-and-conquer algorithms.

But in many situations there is a difference between rules and trees in terms
of the perspicuity of the representation. For example, when we described the
replicated subtree problem in Section 3.3, we noted that rules can be symmet-
ric whereas trees must select one attribute to split on first, and this can lead to
trees that are much larger than an equivalent set of rules. Another difference is
that, in the multiclass case, a decision tree split takes all classes into account,
trying to maximize the purity of the split, whereas the rule-generating method
concentrates on one class at a time, disregarding what happens to the other
classes.

A simple covering algorithm

Covering algorithms operate by adding tests to the rule that is under construc-
tion, always striving to create a rule with maximum accuracy. In contrast, divide-
and-conquer algorithms operate by adding tests to the tree that is under
construction, always striving to maximize the separation among the classes.
Each of these involves finding an attribute to split on. But the criterion for the
best attribute is different in each case. Whereas divide-and-conquer algorithms
such as ID3 choose an attribute to maximize the information gain, the cover-
ing algorithm we will describe chooses an attribute—value pair to maximize the
probability of the desired classification.

Figure 4.7 gives a picture of the situation, showing the space containing all
the instances, a partially constructed rule, and the same rule after a new term
has been added. The new term restricts the coverage of the rule: the idea is to
include as many instances of the desired class as possible and exclude as many
instances of other classes as possible. Suppose the new rule will cover a total of
t instances, of which p are positive examples of the class and t — p are in other



108

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

space of examples
rule so far

rule after adding new term

Figure 4.7 The instance space during operation of a covering algorithm.

classes—that is, they are errors made by the rule. Then choose the new term to
maximize the ratio p/t.

An example will help. For a change, we use the contact lens problem of Table
1.1. We will form rules that cover each of the three classes, hard, soft, and none,
in turn. To begin, we seek a rule:

If ? then recommendation = hard

For the unknown term ?, we have nine choices:

age = young 2/8
age = pre-presbyopic 1/8
age = presbyopic 1/8
spectacle prescription = myope 3/12
spectacle prescription = hypermetrope 1/12
astigmatism = no 0/12
astigmatism = yes 4/12
tear production rate = reduced 012
tear production rate = normal 4/12

The numbers on the right show the fraction of “correct” instances in the set
singled out by that choice. In this case, correct means that the recommendation is
hard. For instance, age = young selects eight instances, two of which recommend
hard contact lenses, so the first fraction is 2/8. (To follow this, you will need to
look back at the contact lens data in Table 1.1 on page 6 and count up the entries
in the table.) We select the largest fraction, 4/12, arbitrarily choosing between
the seventh and the last choice in the preceding list, and create the rule:

If astigmatism = yes then recommendation = hard

This rule is an inaccurate one, getting only 4 instances correct out of the 12
that it covers, shown in Table 4.8. So we refine it further:

If astigmatism = yes and ? then recommendation = hard



4.4  COVERING ALGORITHMS: CONSTRUCTING RULES 109
Table 4.8 Part of the contact lens data for which astigmatism = yes.
Age Spectacle Astigmatism Tear production Recommended
prescription rate lenses

young myope yes reduced none
young myope yes normal hard
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-preshyopic myope yes reduced none
pre-preshyopic myope yes normal hard
pre-preshyopic hypermetrope yes reduced none
pre-preshyopic hypermetrope yes normal none
preshyopic myope yes reduced none
preshyopic myope yes normal hard
preshyopic hypermetrope yes reduced none
preshyopic hypermetrope yes normal none

Considering the possibilities for the unknown term ? yields the seven choices:

age = young

age = pre-presbyopic

age = presbyopic

spectacle prescription
spectacle prescription
tear production rate
tear production rate

myope
hypermetrope
reduced
normal

2/4
1/4
1/4
3/6
1/6
0/6
4/6

(Again, count the entries in Table 4.8.) The last is a clear winner, getting four
instances correct out of the six that it covers, and corresponds to the rule

If astigmatism = yes and tear production rate = normal

then recommendation = hard

Should we stop here? Perhaps. But let’s say we are going for exact rules, no
matter how complex they become. Table 4.9 shows the cases that are covered by
the rule so far. The possibilities for the next term are now

age = young

age

pre-presbyopic

age = presbyopic

spectacle prescription
spectacle prescription

myope
= hypermetrope

212
172
172
3/3
1/3

We need to choose between the first and fourth. So far we have treated the frac-
tions numerically, but although these two are equal (both evaluate to 1), they
have different coverage: one selects just two correct instances and the other



1110

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

Table 4.9 Part of the contact lens data for which astigmatism = yes and tear

production rate = normal.

Age Spectacle Astigmatism Tear production Recommended
prescription rate lenses

young myope yes normal hard

young hypermetrope yes normal hard

pre-preshyopic myope yes normal hard

pre-preshyopic hypermetrope yes normal none

preshyopic myope yes normal hard

presbyopic hypermetrope yes normal none

selects three. In the event of a tie, we choose the rule with the greater coverage,
giving the final rule:

If astigmatism = yes and tear production rate = normal
and spectacle prescription = myope then recommendation = hard

This is indeed one of the rules given for the contact lens problem. But it only
covers three of the four hard recommendations. So we delete these three from
the set of instances and start again, looking for another rule of the form:

If ? then recommendation = hard

Following the same process, we will eventually find that age = young is the best
choice for the first term. Its coverage is seven; the reason for the seven is that 3
instances have been removed from the original set, leaving 21 instances alto-
gether. The best choice for the second term is astigmatism = yes, selecting 1/3
(actually, this is a tie); tear production rate = normal is the best for the third,
selecting 1/1.

If age = young and astigmatism = yes and
tear production rate = normal then recommendation = hard

This rule actually covers three of the original set of instances, two of which are
covered by the previous rule—but that’s all right because the recommendation
is the same for each rule.

Now that all the hard-lens cases are covered, the next step is to proceed with
the soft-lens ones in just the same way. Finally, rules are generated for the none
case—unless we are seeking a rule set with a default rule, in which case explicit
rules for the final outcome are unnecessary.

What we have just described is the PRISM method for constructing rules. It
generates only correct or “perfect” rules. It measures the success of a rule by the
accuracy formula p/t. Any rule with accuracy less than 100% is “incorrect” in



4.4  COVERING ALGORITHMS: CONSTRUCTING RULES 111

that it assigns cases to the class in question that actually do not have that class.
PRISM continues adding clauses to each rule until it is perfect: its accuracy is
100%. Figure 4.8 gives a summary of the algorithm. The outer loop iterates over
the classes, generating rules for each class in turn. Note that we reinitialize to
the full set of examples each time round. Then we create rules for that class and
remove the examples from the set until there are none of that class left. When-
ever we create a rule, start with an empty rule (which covers all the examples),
and then restrict it by adding tests until it covers only examples of the desired
class. At each stage choose the most promising test, that is, the one that maxi-
mizes the accuracy of the rule. Finally, break ties by selecting the test with great-
est coverage.

Rules versus decision lists

Consider the rules produced for a particular class, that is, the algorithm in Figure
4.8 with the outer loop removed. It seems clear from the way that these rules
are produced that they are intended to be interpreted in order, that is, as a deci-
sion list, testing the rules in turn until one applies and then using that. This is
because the instances covered by a new rule are removed from the instance set
as soon as the rule is completed (in the third line from the end of the code in
Figure 4.8): thus subsequent rules are designed for instances that are not covered
by the rule. However, although it appears that we are supposed to check the rules
in turn, we do not have to do so. Consider that any subsequent rules generated
for this class will have the same effect—they all predict the same class. This
means that it does not matter what order they are executed in: either a rule will

For each class C
Initialize E to the instance set
While E contains instances in class C
Create a rule R with an empty left-hand side that predicts class C
Until R is perfect (or there are no more attributes to use) do
For each attribute A not mentioned in R, and each value v,
Consider adding the condition A=v to the ILHS of R
Select A and v to maximize the accuracy p/t
(break ties by choosing the condition with the largest p)
Add A=v to R

Remove the instances covered by R from E

Figure 4.8 Pseudocode for a basic rule learner.



112

4.5

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

be found that covers this instance, in which case the class in question is pre-
dicted, or no such rule is found, in which case the class is not predicted.

Now return to the overall algorithm. Each class is considered in turn, and
rules are generated that distinguish instances in that class from the others. No
ordering is implied between the rules for one class and those for another. Con-
sequently, the rules that are produced can be executed independent of order.

As described in Section 3.3, order-independent rules seem to provide more
modularity by each acting as independent nuggets of “knowledge,” but they
suffer from the disadvantage that it is not clear what to do when conflicting
rules apply. With rules generated in this way, a test example may receive multi-
ple classifications, that is, rules that apply to different classes may accept it. Other
test examples may receive no classification at all. A simple strategy to force a
decision in these ambiguous cases is to choose, from the classifications that are
predicted, the one with the most training examples or, if no classification is pre-
dicted, to choose the category with the most training examples overall. These
difficulties do not occur with decision lists because they are meant to be inter-
preted in order and execution stops as soon as one rule applies: the addition of
a default rule at the end ensures that any test instance receives a classification.
It is possible to generate good decision lists for the multiclass case using a slightly
different method, as we shall see in Section 6.2.

Methods such as PRISM can be described as separate-and-conquer algo-
rithms: you identify a rule that covers many instances in the class (and excludes
ones not in the class), separate out the covered instances because they are already
taken care of by the rule, and continue the process on those that are left. This
contrasts nicely with the divide-and-conquer approach of decision trees. The
separate step greatly increases the efficiency of the method because the instance
set continually shrinks as the operation proceeds.

Mining association rules

Association rules are like classification rules. You could find them in the same
way, by executing a divide-and-conquer rule-induction procedure for each pos-
sible expression that could occur on the right-hand side of the rule. But not only
might any attribute occur on the right-hand side with any possible value; a
single association rule often predicts the value of more than one attribute. To
find such rules, you would have to execute the rule-induction procedure once
for every possible combination of attributes, with every possible combination of
values, on the right-hand side. That would result in an enormous number
of association rules, which would then have to be pruned down on the basis of
their coverage (the number of instances that they predict correctly) and their



4.5  MINING ASSOCIATION RULES 113

accuracy (the same number expressed as a proportion of the number of
instances to which the rule applies). This approach is quite infeasible. (Note that,
as we mentioned in Section 3.4, what we are calling coverage is often called
support and what we are calling accuracy is often called confidence.)

Instead, we capitalize on the fact that we are only interested in association
rules with high coverage. We ignore, for the moment, the distinction between
the left- and right-hand sides of a rule and seek combinations of attribute—value
pairs that have a prespecified minimum coverage. These are called itemn sets: an
attribute—value pair is an ifem. The terminology derives from market basket
analysis, in which the items are articles in your shopping cart and the super-
market manager is looking for associations among these purchases.

Item sets

The first column of Table 4.10 shows the individual items for the weather data
of Table 1.2, with the number of times each item appears in the dataset given
at the right. These are the one-item sets. The next step is to generate the two-
item sets by making pairs of one-item ones. Of course, there is no point in
generating a set containing two different values of the same attribute (such as
outlook = sunny and outlook = overcast), because that cannot occur in any actual
instance.

Assume that we seek association rules with minimum coverage 2: thus we
discard any item sets that cover fewer than two instances. This leaves 47 two-
item sets, some of which are shown in the second column along with the
number of times they appear. The next step is to generate the three-item sets,
of which 39 have a coverage of 2 or greater. There are 6 four-item sets, and no
five-item sets—for this data, a five-item set with coverage 2 or greater could only
correspond to a repeated instance. The first row of the table, for example, shows
that there are five days when outlook = sunny, two of which have temperature =
mild, and, in fact, on both of those days humidity = high and play = no as well.

Association rules

Shortly we will explain how to generate these item sets efficiently. But first let
us finish the story. Once all item sets with the required coverage have been gen-
erated, the next step is to turn each into a rule, or set of rules, with at least the
specified minimum accuracy. Some item sets will produce more than one rule;
others will produce none. For example, there is one three-item set with a cov-
erage of 4 (row 38 of Table 4.10):

humidity = normal, windy = false, play = yes

This set leads to seven potential rules:



114

Table 4.10

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

Item sets for the weather data with coverage 2 or greater.

One-item sets

Two-item sets

Three-item sets

Four-item sets

outlook = sunny (5)

outlook = overcast (4)

outlook = rainy (5)

temperature = cool (4)

temperature = mild (6)

temperature = hot (4)

humidity = normal (7)

humidity = high (7)

windy = true (6)

windy = false (8)

play = yes (9)

play = no (5)

outlook = sunny
temperature = mild (2)

outlook = sunny
temperature = hot (2)

outlook = sunny
humidity = normal (2)

outlook = sunny
humidity = high (3)

outlook = sunny
windy = true (2)

outlook = sunny
windy = false (3)

outlook = sunny
play = yes (2)

outlook = sunny
play = no (3)

outlook = overcast
temperature = hot (2)

outlook = overcast
humidity = normal (2)

outlook = overcast
humidity = high (2)

outlook = overcast
windy = true (2)

outlook = overcast
windy = false (2)

outlook = sunny
temperature = hot
humidity = high (2)

outlook = sunny
temperature = hot
play =no (2)

outlook = sunny
humidity = normal
play = yes (2)

outlook = sunny
humidity = high
windy = false (2)

outlook = sunny
humidity = high
play = no (3)

outlook = sunny
windy = false
play =no (2)

outlook = overcast
temperature = hot
windy = false (2)
outlook = overcast
temperature = hot
play = yes (2)
outlook = overcast
humidity = normal
play = yes (2)
outlook = overcast
humidity = high
play = yes (2)
outlook = overcast
windy = true

play = yes (2)
outlook = overcast
windy = false

play = yes (2)
outlook = rainy
temperature = cool
humidity = normal (2)

outlook = sunny
temperature = hot
humidity = high
play =no (2)
outlook = sunny
humidity = high
windy = false

play =no (2)
outlook = overcast
temperature = hot
windy = false

play = yes (2)
outlook = rainy
temperature = mild
windy = false

play = yes (2)
outlook = rainy
humidity = normal
windy = false

play = yes (2)
temperature = cool
humidity = normal
windy = false

play =yes (2)




4.5  MINING ASSOCIATION RULES 115

Table 4.10 (continued)
One-item sets Two-item sets Three-item sets Four-item sets
38 humidity = normal humidity = normal
windy = false (4) windy = false
play = yes (4)
39 humidity = normal humidity = high
play = yes (6) windy = false
play =no (2)
40 humidity = high
windy = true (3)
47 windy = false
play =no (2)
If humidity = normal and windy = false then play = yes 4/4
If humidity = normal and play = yes then windy = false 4/6
If windy = false and play = yes then humidity = normal 4/6
If humidity = normal then windy = false and play = yes 4/7
If windy = false then humidity = normal and play = yes 4/8
If play = yes then humidity = normal and windy = false 4/9

If - then humidity = normal and windy = false and play = yes 4/12

The figures at the right show the number of instances for which all three con-
ditions are true—that is, the coverage—divided by the number of instances for
which the conditions in the antecedent are true. Interpreted as a fraction, they
represent the proportion of instances on which the rule is correct—that is, its
accuracy. Assuming that the minimum specified accuracy is 100%, only the first
of these rules will make it into the final rule set. The denominators of the frac-
tions are readily obtained by looking up the antecedent expression in Table 4.10
(though some are not shown in the Table). The final rule above has no condi-
tions in the antecedent, and its denominator is the total number of instances in
the dataset.

Table 4.11 shows the final rule set for the weather data, with minimum cov-
erage 2 and minimum accuracy 100%, sorted by coverage. There are 58 rules, 3
with coverage 4, 5 with coverage 3, and 50 with coverage 2. Only 7 have two
conditions in the consequent, and none has more than two. The first rule comes
from the item set described previously. Sometimes several rules arise from the
same item set. For example, rules 9, 10, and 11 all arise from the four-item set
in row 6 of Table 4.10:

temperature = cool, humidity = normal, windy = false, play = yes



116

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

Table 4.11 Association rules for the weather data.
Association rule Coverage Accuracy
1 humidity = normal windy = false = play=yes 4 100%
2 temperature = cool = humidity = normal 4 100%
3 outlook = overcast = play=yes 4 100%
4 temperature = cool play = yes = humidity = normal 3 100%
5 outlook = rainy windy = false = play=yes 3 100%
6 outlook =rainy play = yes = windy = false 3 100%
7 outlook = sunny humidity = high = play=no 3 100%
8 outlook = sunny play = no = humidity = high 3 100%
9 temperature = cool windy = false = humidity = normal 2 100%
play = yes
10 temperature = cool humidity = normal windy = play =vyes 2 100%
= false
11 temperature = cool windy = false play = yes = humidity = normal 2 100%
12 outlook = rainy humidity = normal windy = play=yes 2 100%
= false
13 outlook = rainy humidity = normal play = yes windy = false 2 100%
14 outlook = rainy temperature = mild windy play = yes 2 100%
= false
15 outlook = rainy temperature = mild play=yes = windy = false 2 100%
16 temperature = mild windy = false play = yes = outlook = rainy 2 100%
17 outlook = overcast temperature = hot = windy = false 2 100%
play = yes
18  outlook = overcast windy = false = temperature = hot 2 100%
play = yes
19  temperature = hot play = yes = outlook = overcast 2 100%
windy = false
20 outlook = overcast temperature = hot windy = play=yes 2 100%
=false
21 outlook = overcast temperature = hot play = windy =false 2 100%
=yes
22 outlook = overcast windy = false play = yes = temperature = hot 2 100%
23  temperature = hot windy = false play = yes = outlook = overcast 2 100%
24 windy = false play = no = outlook = sunny 2 100%
humidity = high
25 outlook = sunny humidity = high windy =false = play=no 2 100%
26  outlook = sunny windy = false play = no = humidity = high 2 100%
27 humidity = high windy = false play = no = outlook = sunny 2 100%
28  outlook = sunny temperature = hot = humidity = high 2 100%
play = no
29 temperature = hot play =no = outlook = sunny 2 100%
humidity = high
30 outlook = sunny temperature = hot humidity = play=no 2 100%
= high
31 outlook = sunny temperature = hot play=no = humidity = high 2 100%
58  outlook = sunny temperature = hot = humidity = high 2 100%




4.5  MINING ASSOCIATION RULES 111

which has coverage 2. Three subsets of this item set also have coverage 2:

temperature = cool, windy = false
temperature = cool, humidity = normal, windy = false
temperature = cool, windy = false, play = yes

and these lead to rules 9, 10, and 11, all of which are 100% accurate (on the
training data).

Generating rules efficiently

We now consider in more detail an algorithm for producing association rules
with specified minimum coverage and accuracy. There are two stages: generat-
ing item sets with the specified minimum coverage, and from each item set
determining the rules that have the specified minimum accuracy.

The first stage proceeds by generating all one-item sets with the given
minimum coverage (the first column of Table 4.10) and then using this to gen-
erate the two-item sets (second column), three-item sets (third column), and so
on. Each operation involves a pass through the dataset to count the items in
each set, and after the pass the surviving item sets are stored in a hash table—
a standard data structure that allows elements stored in it to be found very
quickly. From the one-item sets, candidate two-item sets are generated, and then
a pass is made through the dataset, counting the coverage of each two-item set;
at the end the candidate sets with less than minimum coverage are removed
from the table. The candidate two-item sets are simply all of the one-item sets
taken in pairs, because a two-item set cannot have the minimum coverage unless
both its constituent one-item sets have minimum coverage, too. This applies in
general: a three-item set can only have the minimum coverage if all three of its
two-item subsets have minimum coverage as well, and similarly for four-item
sets.

An example will help to explain how candidate item sets are generated.
Suppose there are five three-item sets—(A B C), (AB D), (A CD), (A CE), and
(B C D)—where, for example, A is a feature such as outlook = sunny. The union
of the first two, (A B C D), is a candidate four-item set because its other three-
item subsets (A C D) and (B C D) have greater than minimum coverage. If the
three-item sets are sorted into lexical order, as they are in this list, then we need
only consider pairs whose first two members are the same. For example, we do
not consider (A C D) and (B C D) because (A B C D) can also be generated
from (A B C) and (A B D), and if these two are not candidate three-item sets
then (A B C D) cannot be a candidate four-item set. This leaves the pairs (A B
C) and (A B D), which we have already explained, and (A C D) and (A C E).
This second pair leads to the set (A C D E) whose three-item subsets do not all
have the minimum coverage, so it is discarded. The hash table assists with this
check: we simply remove each item from the set in turn and check that the



118

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

remaining three-item set is indeed present in the hash table. Thus in this
example there is only one candidate four-item set, (A B C D). Whether or not
it actually has minimum coverage can only be determined by checking the
instances in the dataset.

The second stage of the procedure takes each item set and generates rules
from it, checking that they have the specified minimum accuracy. If only rules
with a single test on the right-hand side were sought, it would be simply a matter
of considering each condition in turn as the consequent of the rule, deleting it
from the item set, and dividing the coverage of the entire item set by the cov-
erage of the resulting subset—obtained from the hash table—to yield the accu-
racy of the corresponding rule. Given that we are also interested in association
rules with multiple tests in the consequent, it looks like we have to evaluate the
effect of placing each subset of the item set on the right-hand side, leaving the
remainder of the set as the antecedent.

This brute-force method will be excessively computation intensive unless
item sets are small, because the number of possible subsets grows exponentially
with the size of the item set. However, there is a better way. We observed when
describing association rules in Section 3.4 that if the double-consequent rule

If windy = false and play = no then outlook = sunny
and humidity = high

holds with a given minimum coverage and accuracy, then both single-
consequent rules formed from the same item set must also hold:

If humidity = high and windy = false and play = no
then outlook = sunny

If outlook = sunny and windy = false and play = no
then humidity = high

Conversely, if one or other of the single-consequent rules does not hold, there
is no point in considering the double-consequent one. This gives a way of build-
ing up from single-consequent rules to candidate double-consequent ones, from
double-consequent rules to candidate triple-consequent ones, and so on. Of
course, each candidate rule must be checked against the hash table to see if it
really does have more than the specified minimum accuracy. But this generally
involves checking far fewer rules than the brute force method. It is interesting
that this way of building up candidate (n + 1)-consequent rules from actual n-
consequent ones is really just the same as building up candidate (n + 1)-item
sets from actual n-item sets, described earlier.

Discussion

Association rules are often sought for very large datasets, and efficient algo-
rithms are highly valued. The method described previously makes one pass



4.6

4.6 LINEAR MODELS ] ] g

through the dataset for each different size of item set. Sometimes the dataset is
too large to read in to main memory and must be kept on disk; then it may be
worth reducing the number of passes by checking item sets of two consecutive
sizes in one go. For example, once sets with two items have been generated, all
sets of three items could be generated from them before going through the
instance set to count the actual number of items in the sets. More three-item
sets than necessary would be considered, but the number of passes through the
entire dataset would be reduced.

In practice, the amount of computation needed to generate association rules
depends critically on the minimum coverage specified. The accuracy has less
influence because it does not affect the number of passes that we must make
through the dataset. In many situations we will want to obtain a certain num-
ber of rules—say 50—with the greatest possible coverage at a prespecified
minimum accuracy level. One way to do this is to begin by specifying the cov-
erage to be rather high and to then successively reduce it, reexecuting the entire
rule-finding algorithm for each coverage value and repeating this until the
desired number of rules has been generated.

The tabular input format that we use throughout this book, and in particu-
lar a standard ARFF file based on it, is very inefficient for many association-rule
problems. Association rules are often used when attributes are binary—either
present or absent—and most of the attribute values associated with a given
instance are absent. This is a case for the sparse data representation described
in Section 2.4; the same algorithm for finding association rules applies.

Linear models

The methods we have been looking at for decision trees and rules work most
naturally with nominal attributes. They can be extended to numeric attributes
either by incorporating numeric-value tests directly into the decision tree or rule
induction scheme, or by prediscretizing numeric attributes into nominal ones.
We will see how in Chapters 6 and 7, respectively. However, there are methods
that work most naturally with numeric attributes. We look at simple ones here,
ones that form components of more complex learning methods, which we will
examine later.

Numeric prediction: Linear regression

When the outcome, or class, is numeric, and all the attributes are numeric, linear
regression is a natural technique to consider. This is a staple method in statis-
tics. The idea is to express the class as a linear combination of the attributes,
with predetermined weights:

X=wy+wa, +w,a, +...+wa,



120

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

where x is the class; a,, ay, . . ., a; are the attribute values; and wy, wy, . . ., w; are
weights.

The weights are calculated from the training data. Here the notation gets a
little heavy, because we need a way of expressing the attribute values for each
training instance. The first instance will have a class, say x, and attribute values
a,"Y, a,"V, .. ., @'V, where the superscript denotes that it is the first example.
Moreover, it is notationally convenient to assume an extra attribute a, whose
value is always 1.

The predicted value for the first instance’s class can be written as

k
woay) +wia” +wpal +. . +wal =Y wal.

i
=0

This is the predicted, not the actual, value for the first instance’s class. Of inter-
est is the difference between the predicted and the actual values. The method of
linear regression is to choose the coefficients w,—there are k + 1 of them—to
minimize the sum of the squares of these differences over all the training
instances. Suppose there are » training instances; denote the ith one with a
superscript (7). Then the sum of the squares of the differences is

n

k 2
30 S )

i=1

where the expression inside the parentheses is the difference between the ith
instance’s actual class and its predicted class. This sum of squares is what we
have to minimize by choosing the coefficients appropriately.

This is all starting to look rather formidable. However, the minimization
technique is straightforward if you have the appropriate math background.
Suffice it to say that given enough examples—roughly speaking, more examples
than attributes—choosing weights to minimize the sum of the squared differ-
ences is really not difficult. It does involve a matrix inversion operation, but this
is readily available as prepackaged software.

Once the math has been accomplished, the result is a set of numeric weights,
based on the training data, which we can use to predict the class of new
instances. We saw an example of this when looking at the CPU performance
data, and the actual numeric weights are given in Figure 3.7(a). This formula
can be used to predict the CPU performance of new test instances.

Linear regression is an excellent, simple method for numeric prediction, and
it has been widely used in statistical applications for decades. Of course, linear
models suffer from the disadvantage of, well, linearity. If the data exhibits a non-
linear dependency, the best-fitting straight line will be found, where “best” is
interpreted as the least mean-squared difference. This line may not fit very well.



4.6 LINEAR MODELS ] 2]

However, linear models serve well as building blocks for more complex learn-
ing methods.

Linear classification: Logistic regression

Linear regression can easily be used for classification in domains with numeric
attributes. Indeed, we can use any regression technique, whether linear or non-
linear, for classification. The trick is to perform a regression for each class,
setting the output equal to one for training instances that belong to the class
and zero for those that do not. The result is a linear expression for the
class. Then, given a test example of unknown class, calculate the value of each
linear expression and choose the one that is largest. This method is sometimes
called multiresponse linear regression.

One way of looking at multiresponse linear regression is to imagine that it
approximates a numeric membership function for each class. The membership
function is 1 for instances that belong to that class and 0 for other instances.
Given a new instance we calculate its membership for each class and select the
biggest.

Multiresponse linear regression often yields good results in practice.
However, it has two drawbacks. First, the membership values it produces are not
proper probabilities because they can fall outside the range 0 to 1. Second, least-
squares regression assumes that the errors are not only statistically independ-
ent, but are also normally distributed with the same standard deviation, an
assumption that is blatantly violated when the method is applied to classifica-
tion problems because the observations only ever take on the values 0 and 1.

A related statistical technique called logistic regression does not suffer from
these problems. Instead of approximating the 0 and 1 values directly, thereby
risking illegitimate probability values when the target is overshot, logistic regres-
sion builds a linear model based on a transformed target variable.

Suppose first that there are only two classes. Logistic regression replaces the
original target variable

Pr[l|a,,a,,...,a],
which cannot be approximated accurately using a linear function, with
log(Pr[l|ay,a,,...,a.])/(1-Pr[l]a,,a,,...,a.]).

The resulting values are no longer constrained to the interval from 0 to 1 but
can lie anywhere between negative infinity and positive infinity. Figure 4.9(a)
plots the transformation function, which is often called the logit transformation.

The transformed variable is approximated using a linear function just like
the ones generated by linear regression. The resulting model is

Pr(l|a,,a,,...,a,]=1/(1+exp(—w, —wya, —... — wa;)),



171

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

0.8

0.6

0.4

0.2

0

-10 -5 0 5
(b)

Figure 4.9 Logistic regression: (a) the logit transform and (b) an example logistic regres-

sion function.

with weights w. Figure 4.9(b) shows an example of this function in one dimen-

sion, with two weights w, = 0.5 and w, = 1.

Just as in linear regression, weights must be found that fit the training data
well. Linear regression measures the goodness of fit using the squared error. In
logistic regression the log-likelihood of the model is used instead. This is given

by

10



4.6 LINEAR MODELS ] 23

zn: (1-x")log(1-Pr[1 la?,al",... ,af’]) +x log(Pr[1 la”,al, ... ,af)])

i=1

where the x”' are either zero or one.

The weights w; need to be chosen to maximize the log-likelihood. There are
several methods for solving this maximization problem. A simple one is to
iteratively solve a sequence of weighted least-squares regression problems until
the log-likelihood converges to a maximum, which usually happens in a few
iterations.

To generalize logistic regression to several classes, one possibility is to proceed
in the way described previously for multiresponse linear regression by per-
forming logistic regression independently for each class. Unfortunately, the
resulting probability estimates will not sum to one. To obtain proper probabil-
ities it is necessary to couple the individual models for each class. This yields a
joint optimization problem, and there are efficient solution methods for this.

A conceptually simpler, and very general, way to address multiclass problems
is known as pairwise classification. Here a classifier is built for every pair of
classes, using only the instances from these two classes. The output on an
unknown test example is based on which class receives the most votes. This
method generally yields accurate results in terms of classification error. It can
also be used to produce probability estimates by applying a method called pair-
wise coupling, which calibrates the individual probability estimates from the dif-
ferent classifiers.

If there are k classes, pairwise classification builds a total of k(k — 1)/2 clas-
sifiers. Although this sounds unnecessarily computation intensive, it is not. In
fact, if the classes are evenly populated pairwise classification is at least as fast
as any other multiclass method. The reason is that each of the pairwise learn-
ing problem only involves instances pertaining to the two classes under consid-
eration. If  instances are divided evenly among k classes, this amounts to 2n/k
instances per problem. Suppose the learning algorithm for a two-class problem
with # instances takes time proportional to n seconds to execute. Then the run
time for pairwise classification is proportional to k(k — 1)/2 X 2n/k seconds,
which is (k — 1)n. In other words, the method scales linearly with the number
of classes. If the learning algorithm takes more time—say proportional to n°—
the advantage of the pairwise approach becomes even more pronounced.

The use of linear functions for classification can easily be visualized in
instance space. The decision boundary for two-class logistic regression lies
where the prediction probability is 0.5, that is:

Pr{l|a,,a,,...,a,]=1/(1+exp(—w, — wia, — ... — wa; )) = 0.5.

This occurs when



124

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

Wy —wa; —...—wiay =0.

Because this is a linear equality in the attribute values, the boundary is a linear
plane, or hyperplane, in instance space. It is easy to visualize sets of points that
cannot be separated by a single hyperplane, and these cannot be discriminated
correctly by logistic regression.

Multiresponse linear regression suffers from the same problem. Each class
receives a weight vector calculated from the training data. Focus for the moment
on a particular pair of classes. Suppose the weight vector for class 1 is

w +wla, +wla, +... +wla,

and the same for class 2 with appropriate superscripts. Then, an instance will
be assigned to class 1 rather than class 2 if

)

w +wila, +. .+ wla > wd +w?

a+...+wla,

In other words, it will be assigned to class 1 if
(wél) - W(()z))-l- (Wl(l) — w1(2) )a1 +...+ (w,ﬁl) - w,(f) )ak >0.

This is a linear inequality in the attribute values, so the boundary between each
pair of classes is a hyperplane. The same holds true when performing pairwise
classification. The only difference is that the boundary between two classes is
governed by the training instances in those classes and is not influenced by the
other classes.

Linear classification using the perceptron

Logistic regression attempts to produce accurate probability estimates by max-
imizing the probability of the training data. Of course, accurate probability esti-
mates lead to accurate classifications. However, it is not necessary to perform
probability estimation if the sole purpose of the model is to predict class labels.
A different approach is to learn a hyperplane that separates the instances per-
taining to the different classes—let’s assume that there are only two of them. If
the data can be separated perfectly into two groups using a hyperplane, it is said
to be linearly separable. It turns out that if the data is linearly separable, there
is a very simple algorithm for finding a separating hyperplane.

The algorithm is called the perceptron learning rule. Before looking at it in
detail, let’s examine the equation for a hyperplane again:

Wody +wia, +wya, +...+wia, =0.

Here, a,, a, . . ., a; are the attribute values, and wy, w, . . ., w; are the weights
that define the hyperplane. We will assume that each training instance a,, a,,
.. .1is extended by an additional attribute g, that always has the value 1 (as we
did in the case of linear regression). This extension, which is called the bias, just



4.6 LINEAR MODELS ] 25

Set all weights to zero
Until all instances in the training data are classified correctly
For each instance I in the training data

If I is classified incorrectly by the perceptron

If I belongs to the first class add it to the weight vector

else subtract it from the weight vector

1 attribute attribute attribute
("bias") a, a, as

Figure 410 The perceptron: (a) learning rule and (b) representation as a neural network.

means that we don’t have to include an additional constant element in the sum.
If the sum is greater than zero, we will predict the first class; otherwise, we will
predict the second class. We want to find values for the weights so that the train-
ing data is correctly classified by the hyperplane.

Figure 4.10(a) gives the perceptron learning rule for finding a separating
hyperplane. The algorithm iterates until a perfect solution has been found, but
it will only work properly if a separating hyperplane exists, that is, if the data is
linearly separable. Each iteration goes through all the training instances. If a
misclassified instance is encountered, the parameters of the hyperplane are
changed so that the misclassified instance moves closer to the hyperplane or
maybe even across the hyperplane onto the correct side. If the instance belongs
to the first class, this is done by adding its attribute values to the weight vector;
otherwise, they are subtracted from it.



126

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

To see why this works, consider the situation after an instance a pertaining
to the first class has been added:

(wo +ag)ag +(w, +ay)a, +(w, +ay)a, +...+(w, +a,)ay.
This means the output for a has increased by
dy X ag+a, X a,+a, Xa, +...+a; Xa.

This number is always positive. Thus the hyperplane has moved in the correct
direction for classifying instance a as positive. Conversely, if an instance belong-
ing to the second class is misclassified, the output for that instance decreases
after the modification, again moving the hyperplane to the correct direction.
These corrections are incremental and can interfere with earlier updates.
However, it can be shown that the algorithm converges in a finite number of
iterations if the data is linearly separable. Of course, if the data is not linearly
separable, the algorithm will not terminate, so an upper bound needs to be
imposed on the number of iterations when this method is applied in practice.
The resulting hyperplane is called a perceptron, and it’s the grandfather of
neural networks (we return to neural networks in Section 6.3). Figure 4.10(b)
represents the perceptron as a graph with nodes and weighted edges, imagina-
tively termed a “network” of “neurons.” There are two layers of nodes: input and
output. The input layer has one node for every attribute, plus an extra node that
is always set to one. The output layer consists of just one node. Every node in
the input layer is connected to the output layer. The connections are weighted,
and the weights are those numbers found by the perceptron learning rule.
When an instance is presented to the perceptron, its attribute values serve to
“activate” the input layer. They are multiplied by the weights and summed up
at the output node. If the weighted sum is greater than 0 the output signal is 1,
representing the first class; otherwise, it is —1, representing the second.

Linear classification using Winnow

The perceptron algorithm is not the only method that is guaranteed to find a
separating hyperplane for a linearly separable problem. For datasets with binary
attributes there is an alternative known as Winnow, shown in Figure 4.11(a).
The structure of the two algorithms is very similar. Like the perceptron, Winnow
only updates the weight vector when a misclassified instance is encountered—
it is mistake driven.

The two methods differ in how the weights are updated. The perceptron rule
employs an additive mechanism that alters the weight vector by adding (or sub-
tracting) the instance’s attribute vector. Winnow employs multiplicative updates
and alters weights individually by multiplying them by the user-specified
parameter o (or its inverse). The attribute values g; are either 0 or 1 because we



4.6 LINEAR MODELS

171

While some instances are misclassified
for every instance a
classify a using the current weights
if the predicted class is incorrect
if a belongs to the first class
for each a; that is 1, multiply w; by a
(if a; is 0, leave w; unchanged)
otherwise
for each @ that is 1, divide w; by o

(if a; is 0, leave w; unchanged)

While some instances are misclassified
for every instance a
classify a using the current weights
if the predicted class is incorrect
if a belongs to the first class
for each «; that is 1,
multiply w;" by o
divide w;i by o
(if a; is 0, leave w;" and w; unchanged)
otherwise for
for each a; that is 1,
multiply wi~ by o
divide w;" by o

(if a; is 0, leave w;" and w; unchanged)

(b)

Figure 411 The Winnow algorithm: (a) the unbalanced version and (b) the balanced

version.



128

4.1

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

are working with binary data. Weights are unchanged if the attribute value is 0,
because then they do not participate in the decision. Otherwise, the multiplier
is o if that attribute helps to make a correct decision and 1/¢ if it does not.

Another difference is that the threshold in the linear function is also a user-
specified parameter. We call this threshold 8 and classify an instance as belong-
ing to class 1 if and only if

Wodo +Wia, +wya, +...+wia;, > 0.

The multiplier ¢ needs to be greater than one. The w; are set to a constant at
the start.

The algorithm we have described doesn’t allow negative weights, which—
depending on the domain—can be a drawback. However, there is a version,
called Balanced Winnow, which does allow them. This version maintains two
weight vectors, one for each class. An instance is classified as belonging to class
1if:

(wy —wg )ag+(w) —wy )ay+...+(wi —wy )a, >0

Figure 4.11(b) shows the balanced algorithm.

Winnow is very effective in homing in on the relevant features in a dataset—
therefore it is called an attribute-efficient learner. That means that it may be a
good candidate algorithm if a dataset has many (binary) features and most of
them are irrelevant. Both winnow and the perceptron algorithm can be used in
an online setting in which new instances arrive continuously, because they can
incrementally update their hypotheses as new instances arrive.

Instance-based learning

In instance-based learning the training examples are stored verbatim, and a dis-
tance function is used to determine which member of the training set is closest
to an unknown test instance. Once the nearest training instance has been
located, its class is predicted for the test instance. The only remaining problem
is defining the distance function, and that is not very difficult to do, particularly
if the attributes are numeric.

The distance function

Although there are other possible choices, most instance-based learners use

Fuclidean distance. The distance between an instance with attribute values a,"V,

a,V, ..., @V (where k is the number of attributes) and one with values a,”,

a,?, ..., a? is defined as

V(@ —a?) +(a® —a?) +...+(al’ —a?) .




4.7 INSTANCE-BASED LEARNING ] 29

When comparing distances it is not necessary to perform the square root oper-
ation; the sums of squares can be compared directly. One alternative to the
Euclidean distance is the Manhattan or city-block metric, where the difference
between attribute values is not squared but just added up (after taking the
absolute value). Others are obtained by taking powers higher than the square.
Higher powers increase the influence of large differences at the expense of small
differences. Generally, the Euclidean distance represents a good compromise.
Other distance metrics may be more appropriate in special circumstances. The
key is to think of actual instances and what it means for them to be separated
by a certain distance—what would twice that distance mean, for example?

Different attributes are measured on different scales, so if the Euclidean
distance formula were used directly, the effects of some attributes might be
completely dwarfed by others that had larger scales of measurement. Conse-
quently, it is usual to normalize all attribute values to lie between 0 and 1, by
calculating

v; —minv;

4 ="+
maxv; —minv;

where v; is the actual value of attribute 7, and the maximum and minimum are

taken over all instances in the training set.

These formulae implicitly assume numeric attributes. Here, the difference
between two values is just the numerical difference between them, and it is this
difference that is squared and added to yield the distance function. For nominal
attributes that take on values that are symbolic rather than numeric, the differ-
ence between two values that are not the same is often taken to be one, whereas
if the values are the same the difference is zero. No scaling is required in this
case because only the values 0 and 1 are used.

A common policy for handling missing values is as follows. For nominal
attributes, assume that a missing feature is maximally different from any other
feature value. Thus if either or both values are missing, or if the values are dif-
ferent, the difference between them is taken as one; the difference is zero only
if they are not missing and both are the same. For numeric attributes, the dif-
ference between two missing values is also taken as one. However, if just one
value is missing, the difference is often taken as either the (normalized) size of
the other value or one minus that size, whichever is larger. This means that if
values are missing, the difference is as large as it can possibly be.

Finding nearest neighbors efficiently

Although instance-based learning is simple and effective, it is often slow. The
obvious way to find which member of the training set is closest to an unknown
test instance is to calculate the distance from every member of the training set



]3[] CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

(7,4); h
as
A
o (3,8)
(6,7)
(2,2) (6,7); v
(7,4)
0(2,2)
3,8 >

@ % ®) a,
Figure 4.12 A kD-tree for four training instances: (a) the tree and (b) instances and

splits.

and select the smallest. This procedure is linear in the number of training
instances: in other words, the time it takes to make a single prediction is pro-
portional to the number of training instances. Processing an entire test set takes
time proportional to the product of the number of instances in the training and
test sets.

Nearest neighbors can be found more efficiently by representing the training
set as a tree, although it is not quite obvious how. One suitable structure is a
kD-tree. This is a binary tree that divides the input space with a hyperplane
and then splits each partition again, recursively. All splits are made parallel to
one of the axes, either vertically or horizontally, in the two-dimensional case.
The data structure is called a kD-tree because it stores a set of points in k-
dimensional space, k being the number of attributes.

Figure 4.12(a) gives a small example with k = 2, and Figure 4.12(b) shows the
four training instances it represents, along with the hyperplanes that constitute
the tree. Note that these hyperplanes are not decision boundaries: decisions are
made on a nearest-neighbor basis as explained later. The first split is horizon-
tal (h), through the point (7,4)—this is the tree’s root. The left branch is not
split further: it contains the single point (2,2), which is a leaf of the tree. The
right branch is split vertically (v) at the point (6,7). Its left child is empty, and
its right child contains the point (3,8). As this example illustrates, each region
contains just one point—or, perhaps, no points. Sibling branches of the tree—
for example, the two daughters of the root in Figure 4.12(a)—are not neces-
sarily developed to the same depth. Every point in the training set corresponds
to a single node, and up to half are leaf nodes.



4.7 INSTANCE-BASED LEARNING ] 3]

Figure 4.13 Using a kD-tree to find the nearest neighbor of the star.

How do you build a kD-tree from a dataset? Can it be updated efficiently as
new training examples are added? And how does it speed up nearest-neighbor
calculations? We tackle the last question first.

To locate the nearest neighbor of a given target point, follow the tree down
from its root to locate the region containing the target. Figure 4.13 shows a space
like that of Figure 4.12(b) but with a few more instances and an extra bound-
ary. The target, which is not one of the instances in the tree, is marked by a star.
The leaf node of the region containing the target is colored black. This is not
necessarily the target’s closest neighbor, as this example illustrates, but it is a
good first approximation. In particular, any nearer neighbor must lie closer—
within the dashed circle in Figure 4.13. To determine whether one exists, first
check whether it is possible for a closer neighbor to lie within the node’s sibling.
The black node’s sibling is shaded in Figure 4.13, and the circle does not inter-
sect it, so the sibling cannot contain a closer neighbor. Then back up to the
parent node and check its sibling—which here covers everything above the hor-
izontal line. In this case it must be explored, because the area it covers intersects
with the best circle so far. To explore it, find its daughters (the original point’s
two aunts), check whether they intersect the circle (the left one does not, but
the right one does), and descend to see whether it contains a closer point (it
does).



132

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

In a typical case, this algorithm is far faster than examining all points to find
the nearest neighbor. The work involved in finding the initial approximate
nearest neighbor—the black point in Figure 4.13—depends on the depth of the
tree, given by the logarithm of the number of nodes, log,n. The amount of work
involved in backtracking to check whether this really is the nearest neighbor
depends a bit on the tree, and on how good the initial approximation is. But for
a well-constructed tree whose nodes are approximately square, rather than long
skinny rectangles, it can also be shown to be logarithmic in the number of nodes.

How do you build a good tree for a set of training examples? The problem
boils down to selecting the first training instance to split at and the direction of
the split. Once you can do that, apply the same method recursively to each child
of the initial split to construct the entire tree.

To find a good direction for the split, calculate the variance of the data points
along each axis individually, select the axis with the greatest variance, and create
a splitting hyperplane perpendicular to it. To find a good place for the hyper-
plane, locate the median value along that axis and select the corresponding
point. This makes the split perpendicular to the direction of greatest spread,
with half the points lying on either side. This produces a well-balanced tree. To
avoid long skinny regions it is best for successive splits to be along different axes,
which is likely because the dimension of greatest variance is chosen at each stage.
However, if the distribution of points is badly skewed, choosing the median
value may generate several successive splits in the same direction, yielding long,
skinny hyperrectangles. A better strategy is to calculate the mean rather than the
median and use the point closest to that. The tree will not be perfectly balanced,
but its regions will tend to be squarish because there is a greater chance that dif-
ferent directions will be chosen for successive splits.

An advantage of instance-based learning over most other machine learning
methods is that new examples can be added to the training set at any time. To
retain this advantage when using a kD-tree, we need to be able to update it incre-
mentally with new data points. To do this, determine which leaf node contains
the new point and find its hyperrectangle. If it is empty, simply place the new
point there. Otherwise split the hyperrectangle, splitting it along its longest
dimension to preserve squareness. This simple heuristic does not guarantee that
adding a series of points will preserve the tree’s balance, nor that the hyperrec-
tangles will be well shaped for nearest-neighbor search. It is a good idea to
rebuild the tree from scratch occasionally—for example, when its depth grows
to twice the best possible depth.

As we have seen, kD-trees are good data structures for finding nearest neigh-
bors efficiently. However, they are not perfect. Skewed datasets present a basic
conflict between the desire for the tree to be perfectly balanced and the desire
for regions to be squarish. More importantly, rectangles—even squares—are not
the best shape to use anyway, because of their corners. If the dashed circle in



4.7 INSTANCE-BASED LEARNING ] 33

Figure 4.13 were any bigger, which it would be if the black instance were a little
further from the target, it would intersect the lower right-hand corner of the
rectangle at the top left and then that rectangle would have to be investigated,
too—despite the fact that the training instances that define it are a long way
from the corner in question. The corners of rectangular regions are awkward.

The solution? Use hyperspheres, not hyperrectangles. Neighboring spheres
may overlap whereas rectangles can abut, but this is not a problem because the
nearest-neighbor algorithm for kD-trees described previously does not depend
on the regions being disjoint. A data structure called a ball tree defines k-
dimensional hyperspheres (“balls”) that cover the data points, and arranges
them into a tree.

Figure 4.14(a) shows 16 training instances in two-dimensional space, over-
laid by a pattern of overlapping circles, and Figure 4.14(b) shows a tree formed
from these circles. Circles at different levels of the tree are indicated by differ-
ent styles of dash, and the smaller circles are drawn in shades of gray. Each node
of the tree represents a ball, and the node is dashed or shaded according to the
same convention so that you can identify which level the balls are at. To help
you understand the tree, numbers are placed on the nodes to show how many
data points are deemed to be inside that ball. But be careful: this is not neces-
sarily the same as the number of points falling within the spatial region that the
ball represents. The regions at each level sometimes overlap, but points that fall
into the overlap area are assigned to only one of the overlapping balls (the
diagram does not show which one). Instead of the occupancy counts in Figure
4.14(b) the nodes of actual ball trees store the center and radius of their ball;
leaf nodes record the points they contain as well.

To use a ball tree to find the nearest neighbor to a given target, start by tra-
versing the tree from the top down to locate the leaf that contains the target and
find the closest point to the target in that ball. This gives an upper bound for
the target’s distance from its nearest neighbor. Then, just as for the kD-tree,
examine the sibling node. If the distance from the target to the sibling’s center
exceeds its radius plus the current upper bound, it cannot possibly contain a
closer point; otherwise the sibling must be examined by descending the tree
further. In Figure 4.15 the target is marked with a star and the black dot is its
closest currently known neighbor. The entire contents of the gray ball can be
ruled out: it cannot contain a closer point because its center is too far away.
Proceed recursively back up the tree to its root, examining any ball that may
possibly contain a point nearer than the current upper bound.

Ball trees are built from the top down, and as with kD-trees the basic problem
is to find a good way of splitting a ball containing a set of data points into two.
In practice you do not have to continue until the leaf balls contain just
two points: you can stop earlier, once a predetermined minimum number is
reached—and the same goes for kD-trees. Here is one possible splitting method.



]34 CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

. de

Figure 4.14 Ball tree for 16 training instances: (a) instances and balls and (b) the tree.



4.7 INSTANCE-BASED LEARNING ] 35

Figure 415 Ruling out an entire ball (gray) based on a target point (star) and its current
nearest neighbor.

Choose the point in the ball that is farthest from its center, and then a second
point that is farthest from the first one. Assign all data points in the ball to the
closest one of these two cluster centers, then compute the centroid of each
cluster and the minimum radius required for it to enclose all the data points it
represents. This method has the merit that the cost of splitting a ball contain-
ing n points is only linear in n. There are more elaborate algorithms that
produce tighter balls, but they require more computation. We will not describe
sophisticated algorithms for constructing ball trees or updating them incre-
mentally as new training instances are encountered.

Discussion

Nearest-neighbor instance-based learning is simple and often works very
well. In the method described previously each attribute has exactly the same
influence on the decision, just as it does in the Naive Bayes method. Another
problem is that the database can easily become corrupted by noisy exemplars.
One solution is to adopt the k-nearest-neighbor strategy, where some fixed,
small, number k of nearest neighbors—say five—are located and used together
to determine the class of the test instance through a simple majority vote. (Note
that we used k to denote the number of attributes earlier; this is a different, inde-
pendent usage.) Another way of proofing the database against noise is to choose
the exemplars that are added to it selectively and judiciously; improved proce-
dures, described in Chapter 6, address these shortcomings.



136

4.8

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

The nearest-neighbor method originated many decades ago, and statisticians
analyzed k-nearest-neighbor schemes in the early 1950s. If the number of train-
ing instances is large, it makes intuitive sense to use more than one nearest
neighbor, but clearly this is dangerous if there are few instances. It can be shown
that when k and the number 7 of instances both become infinite in such a way
that k/n — 0, the probability of error approaches the theoretical minimum for
the dataset. The nearest-neighbor method was adopted as a classification
method in the early 1960s and has been widely used in the field of pattern recog-
nition for more than three decades.

Nearest-neighbor classification was notoriously slow until kD-trees began to
be applied in the early 1990s, although the data structure itself was developed
much earlier. In practice, these trees become inefficient when the dimension of
the space increases and are only worthwhile when the number of attributes is
small—up to 10. Ball trees were developed much more recently and are an
instance of a more general structure sometimes called a metric tree. Sophisti-
cated algorithms can create metric trees that deal successfully with thousands
of dimensions.

Instead of storing all training instances, you can compress them into regions.
A very simple technique, mentioned at the end of Section 4.1, is to just record
the range of values observed in the training data for each attribute and cate-
gory. Given a test instance, you work out which ranges the attribute values fall
into and choose the category with the greatest number of correct ranges for that
instance. A slightly more elaborate technique is to construct intervals for each
attribute and use the training set to count the number of times each class occurs
for each interval on each attribute. Numeric attributes can be discretized into
intervals, and “intervals” consisting of a single point can be used for nominal
ones. Then, given a test instance, you can determine which intervals it resides
in and classify it by voting, a method called voting feature intervals. These
methods are very approximate, but very fast, and can be useful for initial analy-
sis of large datasets.

Clustering

Clustering techniques apply when there is no class to be predicted but rather
when the instances are to be divided into natural groups. These clusters pre-
sumably reflect some mechanism at work in the domain from which instances
are drawn, a mechanism that causes some instances to bear a stronger resem-
blance to each other than they do to the remaining instances. Clustering natu-
rally requires different techniques to the classification and association learning
methods we have considered so far.



4.8  CLUSTERING 131

As we saw in Section 3.9, there are different ways in which the result of clus-
tering can be expressed. The groups that are identified may be exclusive so that
any instance belongs in only one group. Or they may be overlapping so that an
instance may fall into several groups. Or they may be probabilistic, whereby an
instance belongs to each group with a certain probability. Or they may be hier-
archical, such that there is a crude division of instances into groups at the top
level, and each of these groups is refined further—perhaps all the way down to
individual instances. Really, the choice among these possibilities should be dic-
tated by the nature of the mechanisms that are thought to underlie the partic-
ular clustering phenomenon. However, because these mechanisms are rarely
known—the very existence of clusters is, after all, something that we’re trying
to discover—and for pragmatic reasons too, the choice is usually dictated by the
clustering tools that are available.

We will examine an algorithm that forms clusters in numeric domains, par-
titioning instances into disjoint clusters. Like the basic nearest-neighbor method
of instance-based learning, it is a simple and straightforward technique that
has been used for several decades. In Chapter 6 we examine newer clustering
methods that perform incremental and probabilistic clustering.

lterative distance-based clustering

The classic clustering technique is called k-means. First, you specify in advance
how many clusters are being sought: this is the parameter k. Then k points are
chosen at random as cluster centers. All instances are assigned to their closest
cluster center according to the ordinary Euclidean distance metric. Next the cen-
troid, or mean, of the instances in each cluster is calculated—this is the “means”
part. These centroids are taken to be new center values for their respective clus-
ters. Finally, the whole process is repeated with the new cluster centers. Itera-
tion continues until the same points are assigned to each cluster in consecutive
rounds, at which stage the cluster centers have stabilized and will remain the
same forever.

This clustering method is simple and effective. It is easy to prove that choos-
ing the cluster center to be the centroid minimizes the total squared distance
from each of the cluster’s points to its center. Once the iteration has stabilized,
each point is assigned to its nearest cluster center, so the overall effect is to min-
imize the total squared distance from all points to their cluster centers. But the
minimum is a local one; there is no guarantee that it is the global minimum.
The final clusters are quite sensitive to the initial cluster centers. Completely dif-
ferent arrangements can arise from small changes in the initial random choice.
In fact, this is true of all practical clustering techniques: it is almost always infea-
sible to find globally optimal clusters. To increase the chance of finding a global



138

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

minimum people often run the algorithm several times with different initial
choices and choose the best final result—the one with the smallest total squared
distance.

It is easy to imagine situations in which k-means fails to find a good cluster-
ing. Consider four instances arranged at the vertices of a rectangle in two-
dimensional space. There are two natural clusters, formed by grouping together
the two vertices at either end of a short side. But suppose that the two initial
cluster centers happen to fall at the midpoints of the long sides. This forms a
stable configuration. The two clusters each contain the two instances at either
end of a long side—no matter how great the difference between the long and
the short sides.

Faster distance calculations

The k-means clustering algorithm usually requires several iterations, each
involving finding the distance of k cluster centers from every instance to deter-
mine its cluster. There are simple approximations that speed this up consider-
ably. For example, you can project the dataset and make cuts along selected axes,
instead of using the arbitrary hyperplane divisions that are implied by choos-
ing the nearest cluster center. But this inevitably compromises the quality of the
resulting clusters.

Here’s a better way of speeding things up. Finding the closest cluster center
is not so different from finding nearest neighbors in instance-based learning.
Can the same efficient solutions—kD-trees and ball trees—be used? Yes! Indeed
they can be applied in an even more efficient way, because in each iteration of
k-means all the data points are processed together, whereas in instance-based
learning test instances are processed individually.

First, construct a kD-tree or ball tree for all the data points, which will remain
static throughout the clustering procedure. Each iteration of k-means produces
a set of cluster centers, and all data points must be examined and assigned to
the nearest center. One way of processing the points is to descend the tree from
the root until reaching a leaf and check each individual point in the leaf to find
its closest cluster center. But it may be that the region represented by a higher
interior node falls entirely within the domain of a single cluster center. In that
case all the data points under that node can be processed in one blow!

The aim of the exercise, after all, is to find new positions for the cluster centers
by calculating the centroid of the points they contain. The centroid can be cal-
culated by keeping a running vector sum of the points in the cluster, and a count
of how many there are so far. At the end, just divide one by the other to find
the centroid. Suppose that with each node of the tree we store the vector sum
of the points within that node and a count of the number of points. If the whole
node falls within the ambit of a single cluster, the running totals for that cluster



4.9

4.9 FURTHER READING ] 39

can be updated immediately. If not, look inside the node by proceeding recur-
sively down the tree.

Figure 4.16 shows the same instances and ball tree as Figure 4.14, but with
two cluster centers marked as black stars. Because all instances are assigned to
the closest center, the space is divided in two by the thick line shown in Figure
4.16(a). Begin at the root of the tree in Figure 4.16(b), with initial values for the
vector sum and counts for each cluster; all initial values are zero. Proceed recur-
sively down the tree. When node A is reached, all points within it lie in cluster
1, so cluster 1’s sum and count can be updated with the sum and count for node
A, and we need descend no further. Recursing back to node B, its ball straddles
the boundary between the clusters, so its points must be examined individually.
When node C is reached, it falls entirely within cluster 2; again, we can update
cluster 2 immediately and need descend no further. The tree is only examined
down to the frontier marked by the dashed line in Figure 4.16(b), and the advan-
tage is that the nodes below need not be opened—at least, not on this particu-
lar iteration of k-means. Next time, the cluster centers will have changed and
things may be different.

Discussion

Many variants of the basic k-means procedure have been developed. Some
produce a hierarchical clustering by applying the algorithm with k = 2 to the
overall dataset and then repeating, recursively, within each cluster.

How do you choose k? Often nothing is known about the likely number of
clusters, and the whole point of clustering is to find out. One way is to try dif-
ferent values and choose the best. To do this you need to learn how to evaluate
the success of machine learning, which is what Chapter 5 is about. We return
to clustering in Section 6.6.

Further reading

The 1R scheme was proposed and thoroughly investigated by Holte (1993). It
was never really intended as a machine learning “method”: the point was more
to demonstrate that very simple structures underlie most of the practical
datasets being used to evaluate machine learning methods at the time and that
putting high-powered inductive inference methods to work on simple datasets
was like using a sledgehammer to crack a nut. Why grapple with a complex deci-
sion tree when a simple rule will do? The method that generates one simple rule
per class is the result of work by Lucio de Souza Coelho of Brazil and Len Trigg
of New Zealand, and it has been dubbed hyperpipes. A very simple algorithm,
it has the advantage of being extremely fast and is quite feasible even with an
enormous number of attributes.



/
/
/
P /
O Cio
7/
- /
VAN A
ATe B2~ e T4
/\ ANVAN
2 2 4 2 2 2

6o

Figure 416 A ball tree: (a) two cluster centers and their dividing line and (b) the cor-
responding tree.



4.9 FURTHER READING ]4]

Bayes was an eighteenth-century English philosopher who set out his theory
of probability in “An essay towards solving a problem in the doctrine of
chances,” published in the Philosophical Transactions of the Royal Society of
London (Bayes 1763); the rule that bears his name has been a cornerstone
of probability theory ever since. The difficulty with the application of Bayes’s
rule in practice is the assignment of prior probabilities. Some statisticians,
dubbed Bayesians, take the rule as gospel and insist that people make serious
attempts to estimate prior probabilities accurately—although such estimates are
often subjective. Others, non-Bayesians, prefer the kind of prior-free analysis
that typically generates statistical confidence intervals, which we will meet in the
next chapter. With a particular dataset, prior probabilities are usually reason-
ably easy to estimate, which encourages a Bayesian approach to learning. The
independence assumption made by the Naive Bayes method is a great stumbling
block, however, and some attempts are being made to apply Bayesian analysis
without assuming independence. The resulting models are called Bayesian net-
works (Heckerman et al. 1995), and we describe them in Section 6.7.

Bayesian techniques had been used in the field of pattern recognition (Duda
and Hart 1973) for 20 years before they were adopted by machine learning
researchers (e.g., see Langley et al. 1992) and made to work on datasets with
redundant attributes (Langley and Sage 1994) and numeric attributes (John and
Langley 1995). The label Naive Bayes is unfortunate because it is hard to use
this method without feeling simpleminded. However, there is nothing naive
about its use in appropriate circumstances. The multinomial Naive Bayes model,
which is particularly appropriate for text classification, was investigated by
McCallum and Nigam (1998).

The classic paper on decision tree induction is by Quinlan (1986), who
describes the basic ID3 procedure developed in this chapter. A comprehensive
description of the method, including the improvements that are embodied in
C4.5, appears in a classic book by Quinlan (1993), which gives a listing of the
complete C4.5 system, written in the C programming language. PRISM was
developed by Cendrowska (1987), who also introduced the contact lens dataset.

Association rules are introduced and described in the database literature
rather than in the machine learning literature. Here the emphasis is very much
on dealing with huge amounts of data rather than on sensitive ways of testing
and evaluating algorithms on limited datasets. The algorithm introduced in this
chapter is the Apriori method developed by Agrawal and his associates (Agrawal
et al. 1993a, 1993b; Agrawal and Srikant 1994). A survey of association-rule
mining appears in an article by Chen et al. (1996).

Linear regression is described in most standard statistical texts, and a partic-
ularly comprehensive treatment can be found in a book by Lawson and Hanson
(1995). The use of linear models for classification enjoyed a great deal of pop-
ularity in the 1960s; Nilsson (1965) provides an excellent reference. He defines



142

CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

a linear threshold unit as a binary test of whether a linear function is greater or
less than zero and a linear machine as a set of linear functions, one for each class,
whose value for an unknown example is compared and the largest chosen as its
predicted class. In the distant past, perceptrons fell out of favor on publication
of an influential book that showed they had fundamental limitations (Minsky
and Papert 1969); however, more complex systems of linear functions have
enjoyed a resurgence in recent years in the form of neural networks, described
in Section 6.3. The Winnow algorithms were introduced by Nick Littlestone in
his PhD thesis in 1989 (Littlestone 1988, 1989). Multiresponse linear classifiers
have found a new application recently for an operation called stacking that com-
bines the output of other learning algorithms, described in Chapter 7 (see
Wolpert 1992). Friedman (1996) describes the technique of pairwise classifica-
tion, Firnkranz (2002) further analyzes it, and Hastie and Tibshirani (1998)
extend it to estimate probabilities using pairwise coupling.

Fix and Hodges (1951) performed the first analysis of the nearest-neighbor
method, and Johns (1961) pioneered its use in classification problems. Cover
and Hart (1967) obtained the classic theoretical result that, for large enough
datasets, its probability of error never exceeds twice the theoretical minimum;
Devroye et al. (1996) showed that k-nearest neighbor is asymptotically optimal
for large k and n with k/n — 0. Nearest-neighbor methods gained popularity in
machine learning through the work of Aha (1992), who showed that instance-
based learning can be combined with noisy exemplar pruning and attribute
weighting and that the resulting methods perform well in comparison with
other learning methods. We take this up again in Chapter 6.

The kD-tree data structure was developed by Friedman et al. (1977). Our
description closely follows an explanation given by Andrew Moore in his PhD
thesis (Moore 1991), who, along with Omohundro (1987), pioneered its use in
machine learning. Moore (2000) describes sophisticated ways of constructing
ball trees that perform well even with thousands of attributes. We took our ball
tree example from lecture notes by Alexander Gray of Carnegie-Mellon Uni-
versity. The voting feature intervals method mentioned in the Discussion sub-
section at the end of Section 4.7 is described by Demiroz and Guvenir (1997).

The k-means algorithm is a classic technique, and many descriptions and
variations are available (e.g., see Hartigan 1975). The clever use of kD-trees to
speed up k-means clustering, which we chose to illustrate using ball trees
instead, was pioneered by Moore and Pelleg (2000) in their X-means clustering
algorithm. That algorithm also contains some other innovations, described in
Section 6.6.



What's Been Leamed

[d cm ]

Evaluation is the key to making real progress in data mining. There are lots of
ways of inferring structure from data: we have encountered many already and
will see further refinements, and new methods, in the next chapter. But to deter-
mine which ones to use on a particular problem we need systematic ways to
evaluate how different methods work and to compare one with another. Eval-
uation is not as simple as it might appear at first sight.

What’s the problem? We have the training set; surely we can just look at how
well different methods do on that. Well, no: as we will see very shortly, per-
formance on the training set is definitely not a good indicator of performance
on an independent test set. We need ways of predicting performance bounds in
practice, based on experiments with whatever data can be obtained.

When a vast supply of data is available, this is no problem: just make a model
based on a large training set, and try it out on another large test set. But although
data mining sometimes involves “big data”—particularly in marketing, sales,
and customer support applications—it is often the case that data, quality data,
is scarce. The oil slicks mentioned in Chapter 1 (pages 23—-24) had to be detected

143



144

5.1

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

and marked manually—a skilled and labor-intensive process—before being
used as training data. Even in the credit card application (pages 22-23), there
turned out to be only 1000 training examples of the appropriate type. The elec-
tricity supply data (pages 24-25) went back 15 years, 5000 days—but only 15
Christmas Days and Thanksgivings, and just 4 February 29s and presidential
elections. The electromechanical diagnosis application (pages 25-26) was able
to capitalize on 20 years of recorded experience, but this yielded only 300 usable
examples of faults. Marketing and sales applications (pages 26-28) certainly
involve big data, but many others do not: training data frequently relies on spe-
cialist human expertise—and that is always in short supply.

The question of predicting performance based on limited data is an inter-
esting, and still controversial, one. We will encounter many different techniques,
of which one—repeated cross-validation—is gaining ascendance and is proba-
bly the evaluation method of choice in most practical limited-data situations.
Comparing the performance of different machine learning methods on a given
problem is another matter that is not so easy as it sounds: to be sure that appar-
ent differences are not caused by chance effects, statistical tests are needed. So
far we have tacitly assumed that what is being predicted is the ability to classify
test instances accurately; however, some situations involve predicting the class
probabilities rather than the classes themselves, and others involve predicting
numeric rather than nominal values. Different methods are needed in each case.
Then we look at the question of cost. In most practical data mining situations
the cost of a misclassification error depends on the type of error it is—whether,
for example, a positive example was erroneously classified as negative or vice
versa. When doing data mining, and evaluating its performance, it is often essen-
tial to take these costs into account. Fortunately, there are simple techniques to
make most learning schemes cost sensitive without grappling with the internals
of the algorithm. Finally, the whole notion of evaluation has fascinating philo-
sophical connections. For 2000 years philosophers have debated the question of
how to evaluate scientific theories, and the issues are brought into sharp focus
by data mining because what is extracted is essentially a “theory” of the data.

Training and testing

For classification problems, it is natural to measure a classifier’s performance in
terms of the error rate. The classifier predicts the class of each instance: if it is
correct, that is counted as a success; if not, it is an error. The error rate is just the
proportion of errors made over a whole set of instances, and it measures the
overall performance of the classifier.

Of course, what we are interested in is the likely future performance on new
data, not the past performance on old data. We already know the classifications



5.1  TRAINING AND TESTING 145

of each instance in the training set, which after all is why we can use it for train-
ing. We are not generally interested in learning about those classifications—
although we might be if our purpose is data cleansing rather than prediction.
So the question is, is the error rate on old data likely to be a good indicator of
the error rate on new data? The answer is a resounding no—not if the old data
was used during the learning process to train the classifier.

This is a surprising fact, and a very important one. Error rate on the train-
ing set is not likely to be a good indicator of future performance. Why? Because
the classifier has been learned from the very same training data, any estimate
of performance based on that data will be optimistic, and may be hopelessly
optimistic.

We have already seen an example of this in the labor relations dataset. Figure
1.3(b) was generated directly from the training data, and Figure 1.3(a) was
obtained from it by a process of pruning. The former is likely to be more accu-
rate on the data that was used to train the classifier but will probably perform
less well on independent test data because it is overfitted to the training data.
The first tree will look good according to the error rate on the training data,
better than the second tree. But this does not reflect how they will perform on
independent test data.

The error rate on the training data is called the resubstitution error, because
it is calculated by resubstituting the training instances into a classifier that was
constructed from them. Although it is not a reliable predictor of the true error
rate on new data, it is nevertheless often useful to know.

To predict the performance of a classifier on new data, we need to assess its
error rate on a dataset that played no part in the formation of the classifier. This
independent dataset is called the test set. We assume that both the training data
and the test data are representative samples of the underlying problem.

In some cases the test data might be distinct in nature from the training data.
Consider, for example, the credit risk problem from Section 1.3. Suppose the
bank had training data from branches in New York City and Florida and wanted
to know how well a classifier trained on one of these datasets would perform in
a new branch in Nebraska. It should probably use the Florida data as test data
to evaluate the New York-trained classifier and the New York data to evaluate
the Florida-trained classifier. If the datasets were amalgamated before training,
performance on the test data would probably not be a good indicator of per-
formance on future data in a completely different state.

It is important that the test data was not used in any way to create the clas-
sifier. For example, some learning methods involve two stages, one to come up
with a basic structure and the second to optimize parameters involved in that
structure, and separate sets of data may be needed in the two stages. Or you
might try out several learning schemes on the training data and then evaluate
them—on a fresh dataset, of course—to see which one works best. But none of



146

5.2

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

this data may be used to determine an estimate of the future error rate. In such
situations people often talk about three datasets: the training data, the valida-
tion data, and the fest data. The training data is used by one or more learning
methods to come up with classifiers. The validation data is used to optimize
parameters of those classifiers, or to select a particular one. Then the test data
is used to calculate the error rate of the final, optimized, method. Each of the
three sets must be chosen independently: the validation set must be different
from the training set to obtain good performance in the optimization or selec-
tion stage, and the test set must be different from both to obtain a reliable esti-
mate of the true error rate.

It may be that once the error rate has been determined, the test data is
bundled back into the training data to produce a new classifier for actual use.
There is nothing wrong with this: it is just a way of maximizing the amount of
data used to generate the classifier that will actually be employed in practice.
What is important is that error rates are not quoted based on any of this data.
Also, once the validation data has been used—maybe to determine the best type
of learning scheme to use—then it can be bundled back into the training data
to retrain that learning scheme, maximizing the use of data.

If lots of data is available, there is no problem: we take a large sample and
use it for training; then another, independent large sample of different data and
use it for testing. Provided that both samples are representative, the error rate
on the test set will give a true indication of future performance. Generally, the
larger the training sample the better the classifier, although the returns begin to
diminish once a certain volume of training data is exceeded. And the larger the
test sample, the more accurate the error estimate. The accuracy of the error esti-
mate can be quantified statistically, as we will see in the next section.

The real problem occurs when there is not a vast supply of data available. In
many situations the training data must be classified manually—and so must the
test data, of course, to obtain error estimates. This limits the amount of data
that can be used for training, validation, and testing, and the problem becomes
how to make the most of a limited dataset. From this dataset, a certain amount
is held over for testing—this is called the holdout procedure—and the remain-
der is used for training (and, if necessary, part of that is set aside for validation).
There’s a dilemma here: to find a good classifier, we want to use as much of the
data as possible for training; to obtain a good error estimate, we want to use as
much of it as possible for testing. Sections 5.3 and 5.4 review widely used
methods for dealing with this dilemma.

Predicting performance

Suppose we measure the error of a classifier on a test set and obtain a certain
numeric error rate—say 25%. Actually, in this section we refer to success rate



5.2 PREDICTING PERFORMANCE ]47

rather than error rate, so this corresponds to a success rate of 75%. Now, this is
only an estimate. What can you say about the true success rate on the target
population? Sure, it’s expected to be close to 75%. But how close—within 5%?
Within 10%? It must depend on the size of the test set. Naturally, we would be
more confident of the 75% figure if it was based on a test set of 10,000 instances
rather than on a test set of 100 instances. But how much more confident would
we be?

To answer these questions, we need some statistical reasoning. In statistics, a
succession of independent events that either succeed or fail is called a Bernoulli
process. The classic example is coin tossing. Each toss is an independent event.
Let’s say we always predict heads; but rather than “heads” or “tails,” each toss
is considered a “success” or a “failure.” Let’s say the coin is biased, but we don’t
know what the probability of heads is. Then, if we actually toss the coin 100
times and 75 of them are heads, we have a situation much like the one described
previously for a classifier with an observed 75% success rate on a test set. What
can we say about the true success probability? In other words, imagine that there
is a Bernoulli process—a biased coin—whose true (but unknown) success rate
is p. Suppose that out of N trials, S are successes: thus the observed success rate
is f=S/N. The question is, what does this tell you about the true success rate p?

The answer to this question is usually expressed as a confidence interval; that
is, p lies within a certain specified interval with a certain specified confidence.
For example, if S = 750 successes are observed out of N = 1000 trials, this indi-
cates that the true success rate must be around 75%. But how close to 75%? It
turns out that with 80% confidence, the true success rate p lies between 73.2%
and 76.7%. If S = 75 successes are observed out of N = 100 trials, this also indi-
cates that the true success rate must be around 75%. But the experiment is
smaller, and the 80% confidence interval for p is wider, stretching from 69.1%
to 80.1%.

These figures are easy to relate to qualitatively, but how are they derived quan-
titatively? We reason as follows: the mean and variance of a single Bernoulli trial
with success rate p are p and p(1 — p), respectively. If N trials are taken from a
Bernoulli process, the expected success rate f = S/N is a random variable with
the same mean p; the variance is reduced by a factor of N to p(1 — p)/N. For
large N, the distribution of this random variable approaches the normal distri-
bution. These are all facts of statistics: we will not go into how they are derived.

The probability that a random variable X, with zero mean, lies within a
certain confidence range of width 2z is

Pr[-z< X <z]=c

For a normal distribution, values of ¢ and corresponding values of z are given
in tables printed at the back of most statistical texts. However, the tabulations
conventionally take a slightly different form: they give the confidence that X will



148

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

lie outside the range, and they give it for the upper part of the range only:
Pr[X 2> z].

This is called a one-tailed probability because it refers only to the upper “tail”
of the distribution. Normal distributions are symmetric, so the probabilities for
the lower tail

Pr[X <—z]

are just the same.

Table 5.1 gives an example. Like other tables for the normal distribution, this
assumes that the random variable X has a mean of zero and a variance of one.
Alternatively, you might say that the z figures are measured in standard devia-
tions from the mean. Thus the figure for Pr[X > z] = 5% implies that there is a
5% chance that X lies more than 1.65 standard deviations above the mean.
Because the distribution is symmetric, the chance that X lies more than 1.65
standard deviations from the mean (above or below) is 10%, or

Pr[-1.65< X £1.65]=90%.

All we need do now is reduce the random variable f to have zero mean and unit
variance. We do this by subtracting the mean p and dividing by the standard

deviation +/ p(1— p)/N. This leads to

Pr[—z<ﬁ<z}:c.

Now here is the procedure for finding confidence limits. Given a particular con-
fidence figure ¢, consult Table 5.1 for the corresponding z value. To use the table
you will first have to subtract ¢ from 1 and then halve the result, so that for ¢ =
90% you use the table entry for 5%. Linear interpolation can be used for inter-

Table 5.1 Confidence limits for the normal distribution.

PriX=> 7 z

0.1% 3.09
0.5% 2.58
1% 2.33
5% 1.65
10% 1.28
20% 0.84

40% 0.25




5.3

5.3  CROSS-VALIDATION 149

mediate confidence levels. Then write the inequality in the preceding expression
as an equality and invert it to find an expression for p.

The final step involves solving a quadratic equation. Although not hard to
do, it leads to an unpleasantly formidable expression for the confidence limits:

p:(f+2zli]iz1/1{]—£;+4§;2 )/(Hj;)

The * in this expression gives two values for p that represent the upper and
lower confidence boundaries. Although the formula looks complicated, it is not
hard to work out in particular cases.

This result can be used to obtain the values in the preceding numeric
example. Setting f = 75%, N = 1000, and ¢ = 80% (so that z=1.28) leads to the
interval [0.732,0.767] for p, and N =100 leads to [0.691,0.801] for the same level
of confidence. Note that the normal distribution assumption is only valid for
large N (say, N > 100). Thus f = 75% and N = 10 leads to confidence limits
[0.549,0.881]—but these should be taken with a grain of salt.

Cross-validation

Now consider what to do when the amount of data for training and testing is
limited. The holdout method reserves a certain amount for testing and uses the
remainder for training (and sets part of that aside for validation, if required).
In practical terms, it is common to hold out one-third of the data for testing
and use the remaining two-thirds for training.

Of course, you may be unlucky: the sample used for training (or testing)
might not be representative. In general, you cannot tell whether a sample is rep-
resentative or not. But there is one simple check that might be worthwhile: each
class in the full dataset should be represented in about the right proportion in
the training and testing sets. If, by bad luck, all examples with a certain class
were missing from the training set, you could hardly expect a classifier learned
from that data to perform well on the examples of that class—and the situation
would be exacerbated by the fact that the class would necessarily be overrepre-
sented in the test set because none of its instances made it into the training set!
Instead, you should ensure that the random sampling is done in such a way
as to guarantee that each class is properly represented in both training and test
sets. This procedure is called stratification, and we might speak of stratified
holdout. Although it is generally well worth doing, stratification provides only
a primitive safeguard against uneven representation in training and test sets.

A more general way to mitigate any bias caused by the particular sample
chosen for holdout is to repeat the whole process, training and testing, several
times with different random samples. In each iteration a certain proportion—



150

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

say two-thirds—of the data is randomly selected for training, possibly with
stratification, and the remainder used for testing. The error rates on the differ-
ent iterations are averaged to yield an overall error rate. This is the repeated
holdout method of error rate estimation.

In a single holdout procedure, you might consider swapping the roles of the
testing and training data—that is, train the system on the test data and test it
on the training data—and average the two results, thus reducing the effect of
uneven representation in training and test sets. Unfortunately, this is only really
plausible with a 50:50 split between training and test data, which is generally
not ideal—it is better to use more than half the data for training even at the
expense of test data. However, a simple variant forms the basis of an important
statistical technique called cross-validation. In cross-validation, you decide on a
fixed number of folds, or partitions of the data. Suppose we use three. Then the
data is split into three approximately equal partitions and each in turn is used
for testing and the remainder is used for training. That is, use two-thirds for
training and one-third for testing and repeat the procedure three times so that,
in the end, every instance has been used exactly once for testing. This is called
threefold cross-validation, and if stratification is adopted as well—which it often
is—it is stratified threefold cross-validation.

The standard way of predicting the error rate of a learning technique given
a single, fixed sample of data is to use stratified 10-fold cross-validation. The
data is divided randomly into 10 parts in which the class is represented in
approximately the same proportions as in the full dataset. Each part is held out
in turn and the learning scheme trained on the remaining nine-tenths; then its
error rate is calculated on the holdout set. Thus the learning procedure is exe-
cuted a total of 10 times on different training sets (each of which have a lot in
common). Finally, the 10 error estimates are averaged to yield an overall error
estimate.

Why 10? Extensive tests on numerous datasets, with different learning tech-
niques, have shown that 10 is about the right number of folds to get the best
estimate of error, and there is also some theoretical evidence that backs this up.
Although these arguments are by no means conclusive, and debate continues to
rage in machine learning and data mining circles about what is the best scheme
for evaluation, 10-fold cross-validation has become the standard method in
practical terms. Tests have also shown that the use of stratification improves
results slightly. Thus the standard evaluation technique in situations where only
limited data is available is stratified 10-fold cross-validation. Note that neither
the stratification nor the division into 10 folds has to be exact: it is enough to
divide the data into 10 approximately equal sets in which the various class values
are represented in approximately the right proportion. Statistical evaluation is
not an exact science. Moreover, there is nothing magic about the exact number
10: 5-fold or 20-fold cross-validation is likely to be almost as good.



5.4

5.4  OTHER ESTIMATES 151

A single 10-fold cross-validation might not be enough to get a reliable error
estimate. Different 10-fold cross-validation experiments with the same learning
method and dataset often produce different results, because of the effect of
random variation in choosing the folds themselves. Stratification reduces the
variation, but it certainly does not eliminate it entirely. When seeking an accu-
rate error estimate, it is standard procedure to repeat the cross-validation
process 10 times—that is, 10 times 10-fold cross-validation—and average the
results. This involves invoking the learning algorithm 100 times on datasets that
are all nine-tenths the size of the original. Obtaining a good measure of per-
formance is a computation-intensive undertaking.

Other estimates

Tenfold cross-validation is the standard way of measuring the error rate of a
learning scheme on a particular dataset; for reliable results, 10 times 10-fold
cross-validation. But many other methods are used instead. Two that are par-
ticularly prevalent are leave-one-out cross-validation and the bootstrap.

Leave-one-out

Leave-one-out cross-validation is simply n-fold cross-validation, where # is the
number of instances in the dataset. Each instance in turn is left out, and the
learning method is trained on all the remaining instances. It is judged by its cor-
rectness on the remaining instance—one or zero for success or failure, respec-
tively. The results of all n judgments, one for each member of the dataset, are
averaged, and that average represents the final error estimate.

This procedure is an attractive one for two reasons. First, the greatest possi-
ble amount of data is used for training in each case, which presumably increases
the chance that the classifier is an accurate one. Second, the procedure is deter-
ministic: no random sampling is involved. There is no point in repeating it 10
times, or repeating it at all: the same result will be obtained each time. Set against
this is the high computational cost, because the entire learning procedure must
be executed n times and this is usually quite infeasible for large datasets. Never-
theless, leave-one-out seems to offer a chance of squeezing the maximum out of
a small dataset and obtaining as accurate an estimate as possible.

But there is a disadvantage to leave-one-out cross-validation, apart from the
computational expense. By its very nature, it cannot be stratified—worse than
that, it guarantees a nonstratified sample. Stratification involves getting the
correct proportion of examples in each class into the test set, and this is impos-
sible when the test set contains only a single example. A dramatic, although
highly artificial, illustration of the problems this might cause is to imagine a
completely random dataset that contains the same number of each of two



152

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

classes. The best that an inducer can do with random data is to predict the
majority class, giving a true error rate of 50%. But in each fold of leave-one-
out, the opposite class to the test instance is in the majority—and therefore the
predictions will always be incorrect, leading to an estimated error rate of 100%!

The bootstrap

The second estimation method we describe, the bootstrap, is based on the sta-
tistical procedure of sampling with replacement. Previously, whenever a sample
was taken from the dataset to form a training or test set, it was drawn without
replacement. That is, the same instance, once selected, could not be selected
again. It is like picking teams for football: you cannot choose the same person
twice. But dataset instances are not like people. Most learning methods can use
the same instance twice, and it makes a difference in the result of learning if it
is present in the training set twice. (Mathematical sticklers will notice that we
should not really be talking about “sets” at all if the same object can appear more
than once.)

The idea of the bootstrap is to sample the dataset with replacement to form
a training set. We will describe a particular variant, mysteriously (but for a
reason that will soon become apparent) called the 0.632 bootstrap. For this, a
dataset of n instances is sampled n times, with replacement, to give another
dataset of n instances. Because some elements in this second dataset will (almost
certainly) be repeated, there must be some instances in the original dataset that
have not been picked: we will use these as test instances.

What is the chance that a particular instance will not be picked for the train-
ing set? It has a 1/n probability of being picked each time and therefore a
1 — 1/n probability of not being picked. Multiply these probabilities together
according to the number of picking opportunities, which is 7, and the result is
a figure of

(1 - 1) ~e¢ ' =0.368
n

(where e is the base of natural logarithms, 2.7183, not the error rate!). This gives
the chance of a particular instance not being picked at all. Thus for a reason-
ably large dataset, the test set will contain about 36.8% of the instances and the
training set will contain about 63.2% of them (now you can see why it’s called
the 0.632 bootstrap). Some instances will be repeated in the training set, bring-
ing it up to a total size of n, the same as in the original dataset.

The figure obtained by training a learning system on the training set and cal-
culating its error over the test set will be a pessimistic estimate of the true error
rate, because the training set, although its size is n, nevertheless contains only
63% of the instances, which is not a great deal compared, for example, with the



5.5

5.5 COMPARING DATA MINING METHODS 153

90% used in 10-fold cross-validation. To compensate for this, we combine the
test-set error rate with the resubstitution error on the instances in the training
set. The resubstitution figure, as we warned earlier, gives a very optimistic esti-
mate of the true error and should certainly not be used as an error figure on its
own. But the bootstrap procedure combines it with the test error rate to give a
final estimate e as follows:

e=0.632X € test instances +0.368 X etraining instances®

Then, the whole bootstrap procedure is repeated several times, with different
replacement samples for the training set, and the results averaged.

The bootstrap procedure may be the best way of estimating error for very
small datasets. However, like leave-one-out cross-validation, it has disadvantages
that can be illustrated by considering a special, artificial situation. In fact, the
very dataset we considered previously will do: a completely random dataset with
two classes. The true error rate is 50% for any prediction rule. But a scheme that
memorized the training set would give a perfect resubstitution score of 100%
$0 that e,ining instances = 0> and the 0.632 bootstrap will mix this in with a weight
of 0.368 to give an overall error rate of only 31.6% (0.632 X 50% + 0.368 X 0%),
which is misleadingly optimistic.

Comparing data mining methods

We often need to compare two different learning methods on the same problem
to see which is the better one to use. It seems simple: estimate the error using
cross-validation (or any other suitable estimation procedure), perhaps repeated
several times, and choose the scheme whose estimate is smaller. This is quite
sufficient in many practical applications: if one method has a lower estimated
error than another on a particular dataset, the best we can do is to use the former
method’s model. However, it may be that the difference is simply caused by esti-
mation error, and in some circumstances it is important to determine whether
one scheme is really better than another on a particular problem. This is a stan-
dard challenge for machine learning researchers. If a new learning algorithm is
proposed, its proponents must show that it improves on the state of the art for
the problem at hand and demonstrate that the observed improvement is not
just a chance effect in the estimation process.

This is a job for a statistical test that gives confidence bounds, the kind we
met previously when trying to predict true performance from a given test-set
error rate. If there were unlimited data, we could use a large amount for train-
ing and evaluate performance on a large independent test set, obtaining confi-
dence bounds just as before. However, if the difference turns out to be significant
we must ensure that this is not just because of the particular dataset we



154

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

happened to base the experiment on. What we want to determine is whether
one scheme is better or worse than another on average, across all possible train-
ing and test datasets that can be drawn from the domain. Because the amount
of training data naturally affects performance, all datasets should be the same
size: indeed, the experiment might be repeated with different sizes to obtain a
learning curve.

For the moment, assume that the supply of data is unlimited. For definite-
ness, suppose that cross-validation is being used to obtain the error estimates
(other estimators, such as repeated cross-validation, are equally viable). For each
learning method we can draw several datasets of the same size, obtain an accu-
racy estimate for each dataset using cross-validation, and compute the mean of
the estimates. Each cross-validation experiment yields a different, independent
error estimate. What we are interested in is the mean accuracy across all possi-
ble datasets of the same size, and whether this mean is greater for one scheme
or the other.

From this point of view, we are trying to determine whether the mean of
a set of samples—cross-validation estimates for the various datasets that we
sampled from the domain—is significantly greater than, or significantly less
than, the mean of another. This is a job for a statistical device known as the #-
test, or Student’s t-test. Because the same cross-validation experiment can be
used for both learning methods to obtain a matched pair of results for each
dataset, a more sensitive version of the ¢-test known as a paired t-test can be
used.

We need some notation. There is a set of samples x;, x, . . . , x; obtained by
successive 10-fold cross-validations using one learning scheme, and a second set
of samples y,, 5, . . ., ¥, obtained by successive 10-fold cross-validations using
the other. Each cross-validation estimate is generated using a different dataset
(but all datasets are of the same size and from the same domain). We will get
the best results if exactly the same cross-validation partitions are used for both
schemes so that x; and y, are obtained using the same cross-validation split, as
are x; and y,, and so on. Denote the mean of the first set of samples by x and
the mean of the second set by y. We are trying to determine whether x is sig-
nificantly different from y.

If there are enough samples, the mean (x) of a set of independent samples
(%1, X3, . . ., x3) has a normal (i.e., Gaussian) distribution, regardless of the dis-
tribution underlying the samples themselves. We will call the true value of the
mean U. If we knew the variance of that normal distribution, so that it could be
reduced to have zero mean and unit variance, we could obtain confidence limits
on U given the mean of the samples (x). However, the variance is unknown, and
the only way we can obtain it is to estimate it from the set of samples.

That is not hard to do. The variance of x can be estimated by dividing the
variance calculated from the samples x;, x,, . . . , x;—call it 03—Dby k. But the



5.5 COMPARING DATA MINING METHODS 155

fact that we have to estimate the variance changes things somewhat. We can
reduce the distribution of x to have zero mean and unit variance by using

Because the variance is only an estimate, this does not have a normal distribu-
tion (although it does become normal for large values of k). Instead, it has what
is called a Student’s distribution with k — 1 degrees of freedom. What this means
in practice is that we have to use a table of confidence intervals for Student’s
distribution rather than the confidence table for the normal distribution given
earlier. For 9 degrees of freedom (which is the correct number if we are using
the average of 10 cross-validations) the appropriate confidence limits are shown
in Table 5.2. If you compare them with Table 5.1 you will see that the Student’s
figures are slightly more conservative—for a given degree of confidence, the
interval is slightly wider—and this reflects the additional uncertainty caused
by having to estimate the variance. Different tables are needed for different
numbers of degrees of freedom, and if there are more than 100 degrees of
freedom the confidence limits are very close to those for the normal distribu-
tion. Like Table 5.1, the figures in Table 5.2 are for a “one-sided” confidence
interval.

To decide whether the means x and ¥, each an average of the same number
k of samples, are the same or not, we consider the differences d; between corre-
sponding observations, d; = x; — y;. This is legitimate because the observations
are paired. The mean of this difference is just the difference between the two
means, d =X — y, and, like the means themselves, it has a Student’s distribution
with k — 1 degrees of freedom. If the means are the same, the difference is zero
(this is called the null hypothesis); if they’re significantly different, the difference
will be significantly different from zero. So for a given confidence level, we will
check whether the actual difference exceeds the confidence limit.

Table 5.2 Confidence limits for Student’s
distribution with 9 degrees of freedom.

PriX > z] z

0.1% 4.30
0.5% 3.25
1% 2.82
5% 1.83
10% 1.38

20% 0.88




156

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

First, reduce the difference to a zero-mean, unit-variance variable called the
t-statistic:

o
Vol fk
where 07 is the variance of the difference samples. Then, decide on a confidence
level—generally, 5% or 1% is used in practice. From this the confidence limit z
is determined using Table 5.2 if k is 10; if it is not, a confidence table of the
Student’s distribution for the k value in question is used. A two-tailed test is
appropriate because we do not know in advance whether the mean of the x’s is
likely to be greater than that of the y’s or vice versa: thus for a 1% test we use
the value corresponding to 0.5% in Table 5.2. If the value of t according to the
preceding formula is greater than z, or less than —z, we reject the null hypothe-
sis that the means are the same and conclude that there really is a significant dif-
ference between the two learning methods on that domain for that dataset size.
Two observations are worth making on this procedure. The first is technical:
what if the observations were not paired? That is, what if we were unable, for
some reason, to assess the error of each learning scheme on the same datasets?
What if the number of datasets for each scheme was not even the same? These
conditions could arise if someone else had evaluated one of the methods and
published several different estimates for a particular domain and dataset size—
or perhaps just their mean and variance—and we wished to compare this with
a different learning method. Then it is necessary to use a regular, nonpaired t-
test. If the means are normally distributed, as we are assuming, the difference
between the means is also normally distributed. Instead of taking the mean of
the difference, d, we use the difference of the means, x — y. Of course, that’s the
same thing: the mean of the difference is the difference of the means. But the
variance of the difference d is not the same. If the variance of the samples x;, x,,
., X is 03 and the variance of the samples y;, y», . . ., y1 is G}, the best esti-
mate of the variance of the difference of the means is

2 2
o, o
k 1

It is this variance (or rather, its square root) that should be used as the denom-
inator of the f-statistic given previously. The degrees of freedom, necessary for
consulting Student’s confidence tables, should be taken conservatively to be the
minimum of the degrees of freedom of the two samples. Essentially, knowing
that the observations are paired allows the use of a better estimate for the vari-
ance, which will produce tighter confidence bounds.

The second observation concerns the assumption that there is essentially
unlimited data so that several independent datasets of the right size can be used.



5.6

5.6 PREDICTING PROBABILITIES ] 57

In practice there is usually only a single dataset of limited size. What can be
done? We could split the data into (perhaps 10) subsets and perform a cross-
validation on each. However, the overall result will only tell us whether a learn-
ing scheme is preferable for that particular size—perhaps one-tenth of the
original dataset. Alternatively, the original dataset could be reused—for
example, with different randomizations of the dataset for each cross-validation.”
However, the resulting cross-validation estimates will not be independent
because they are not based on independent datasets. In practice, this means that
a difference may be judged to be significant when in fact it is not. In fact, just
increasing the number of samples k, that is, the number of cross-validation runs,
will eventually yield an apparently significant difference because the value of the
t-statistic increases without bound.

Various modifications of the standard ¢-test have been proposed to circum-
vent this problem, all of them heuristic and lacking sound theoretical justifica-
tion. One that appears to work well in practice is the corrected resampled t-test.
Assume for the moment that the repeated holdout method is used instead of
cross-validation, repeated k times on different random splits of the same dataset
to obtain accuracy estimates for two learning methods. Each time, n, instances
are used for training and n, for testing, and differences d; are computed from
performance on the test data. The corrected resampled t-test uses the modified
statistic

d

1 ”2) 2
—+—2lo
(k n ¢

in exactly the same way as the standard #-statistic. A closer look at the formula
shows that its value cannot be increased simply by increasing k. The same mod-
ified statistic can be used with repeated cross-validation, which is just a special
case of repeated holdout in which the individual test sets for ome cross-
validation do not overlap. For 10-fold cross-validation repeated 10 times,
k =100, n,/n; = 0.1/0.9, and o3 is based on 100 differences.

=

Predicting probabilities

Throughout this section we have tacitly assumed that the goal is to maximize
the success rate of the predictions. The outcome for each test instance is either
correct, if the prediction agrees with the actual value for that instance, or incor-
rect, if it does not. There are no grays: everything is black or white, correct or

2 The method was advocated in the first edition of this book.



158

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

incorrect. In many situations, this is the most appropriate perspective. If the
learning scheme, when it is actually applied, results in either a correct or an
incorrect prediction, success is the right measure to use. This is sometimes called
a 0 — 1 loss function: the “loss” is either zero if the prediction is correct or one
if it is not. The use of loss is conventional, although a more optimistic termi-
nology might couch the outcome in terms of profit instead.

Other situations are softer edged. Most learning methods can associate a
probability with each prediction (as the Naive Bayes method does). It might be
more natural to take this probability into account when judging correctness. For
example, a correct outcome predicted with a probability of 99% should perhaps
weigh more heavily than one predicted with a probability of 51%, and, in a two-
class situation, perhaps the latter is not all that much better than an incorrect
outcome predicted with probability 51%. Whether it is appropriate to take pre-
diction probabilities into account depends on the application. If the ultimate
application really is just a prediction of the outcome, and no prizes are awarded
for a realistic assessment of the likelihood of the prediction, it does not seem
appropriate to use probabilities. If the prediction is subject to further process-
ing, however—perhaps involving assessment by a person, or a cost analysis, or
maybe even serving as input to a second-level learning process—then it may
well be appropriate to take prediction probabilities into account.

Quadratic loss function

Suppose that for a single instance there are k possible outcomes, or classes, and
for a given instance the learning scheme comes up with a probability vector p,,
D2 - - pi for the classes (where these probabilities sum to 1). The actual
outcome for that instance will be one of the possible classes. However, it is con-
venient to express it as a vector a,, d, . . . , a; whose ith component, where i is
the actual class, is 1 and all other components are 0. We can express the penalty
associated with this situation as a loss function that depends on both the p vector
and the a vector.

One criterion that is frequently used to evaluate probabilistic prediction is
the quadratic loss function:

Zj(Pj—aj)z-

Note that this is for a single instance: the summation is over possible outputs
not over different instances. Just one of the a’s will be 1 and the rest will be 0,
so the sum contains contributions of p{ for the incorrect predictions and
(1 — p;)* for the correct one. Consequently, it can be written

1-2pi+2, p;»



5.6 PREDICTING PROBABILITIES ] 59

where i is the correct class. When the test set contains several instances, the loss
function is summed over them all.

It is an interesting theoretical fact that if you seek to minimize the value of
the quadratic loss function in a situation in which the actual class is generated
probabilistically, the best strategy is to choose for the p vector the actual prob-
abilities of the different outcomes, that is, p; = Pr[class = i]. If the true proba-
bilities are known, they will be the best values for p. If they are not, a system
that strives to minimize the quadratic loss function will be encouraged to use
its best estimate of Pr[class = i] as the value for p;.

This is quite easy to see. Denote the true probabilities by pf, p3, . . . , piso that
pf= Pr[class = i]. The expected value of the quadratic loss function for a test
instance can be rewritten as follows:

E[Z;(Pj _aj)z] = Z]-(E[Pf] —2E[pja;]+E[aj])
=2,(pj —2p;p} +p)) =2, ((p;= )"+ p} (1= p)))-

The first stage just involves bringing the expectation inside the sum and expand-
ing the square. For the second, p; is just a constant and the expected value of g;
is simply p¥; moreover, because g; is either 0 or 1, a/= a; and its expected value
is p¥ too. The third stage is straightforward algebra. To minimize the resulting
sum, it is clear that it is best to choose p; = p} so that the squared term disap-
pears and all that is left is a term that is just the variance of the true distribu-
tion governing the actual class.

Minimizing the squared error has a long history in prediction problems. In
the present context, the quadratic loss function forces the predictor to be honest
about choosing its best estimate of the probabilities—or, rather, it gives prefer-
ence to predictors that are able to make the best guess at the true probabilities.
Moreover, the quadratic loss function has some useful theoretical properties that
we will not go into here. For all these reasons it is frequently used as the crite-
rion of success in probabilistic prediction situations.

Informational loss function

Another popular criterion for the evaluation of probabilistic prediction is the
informational loss function:

—log, p;

where the ith prediction is the correct one. This is in fact identical to the nega-
tive of the log-likelihood function that is optimized by logistic regression,
described in Section 4.6. It represents the information (in bits) required to
express the actual class 7 with respect to the probability distribution p;, p,, . . .,



160

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

pi- In other words, if you were given the probability distribution and someone
had to communicate to you which class was the one that actually occurred, this
is the number of bits that person would need to encode the information if they
did it as effectively as possible. (Of course, it is always possible to use more bits.)
Because probabilities are always less than one, their logarithms are negative, and
the minus sign makes the outcome positive. For example, in a two-class situa-
tion—heads or tails—with an equal probability of each class, the occurrence of
a head would take 1 bit to transmit, because —log,1/2 is 1.

The expected value of the informational loss function, if the true probabili-
ties are pf, p%, . . ., P5> 18

—pilog, p,— p>log, p, —...— p log, p;.

Like the quadratic loss function, this expression is minimized by choosing p; =
p#, in which case the expression becomes the entropy of the true distribution:

—pilog, p = py log, p —...— plog, pr.

Thus the informational loss function also rewards honesty in predictors that
know the true probabilities, and encourages predictors that do not to put
forward their best guess.

The informational loss function also has a gambling interpretation in which
you imagine gambling on the outcome, placing odds on each possible class and
winning according to the class that comes up. Successive instances are like suc-
cessive bets: you carry wins (or losses) over from one to the next. The logarithm
of the total amount of money you win over the whole test set is the value of the
informational loss function. In gambling, it pays to be able to predict the odds
as accurately as possible; in that sense, honesty pays, too.

One problem with the informational loss function is that if you assign a
probability of zero to an event that actually occurs, the function’s value is minus
infinity. This corresponds to losing your shirt when gambling. Prudent punters
never bet everything on a particular event, no matter how certain it appears.
Likewise, prudent predictors operating under the informational loss function
do not assign zero probability to any outcome. This leads to a problem when
no information is available about that outcome on which to base a prediction:
this is called the zero-frequency problem, and various plausible solutions have
been proposed, such as the Laplace estimator discussed for Naive Bayes on page
91.

Discussion

If you are in the business of evaluating predictions of probabilities, which of the
two loss functions should you use? That’s a good question, and there is no uni-
versally agreed-upon answer—it’s really a matter of taste. Both do the funda-



5.7

5.7  COUNTING THE COST 161

mental job expected of a loss function: they give maximum reward to predic-
tors that are capable of predicting the true probabilities accurately. However,
there are some objective differences between the two that may help you form
an opinion.

The quadratic loss function takes account not only of the probability assigned
to the event that actually occurred, but also the other probabilities. For example,
in a four-class situation, suppose you assigned 40% to the class that actually
came up and distributed the remainder among the other three classes. The
quadratic loss will depend on how you distributed it because of the sum of
the p; that occurs in the expression given earlier for the quadratic loss function.
The loss will be smallest if the 60% was distributed evenly among the three
classes: an uneven distribution will increase the sum of the squares. The infor-
mational loss function, on the other hand, depends solely on the probability
assigned to the class that actually occurred. If you're gambling on a particular
event coming up, and it does, who cares how you distributed the remainder of
your money among the other events?

If you assign a very small probability to the class that actually occurs, the
information loss function will penalize you massively. The maximum penalty,
for a zero probability, is infinite. The gambling world penalizes mistakes like this
harshly, too! The quadratic loss function, on the other hand, is milder, being
bounded by

1+ p;»

which can never exceed 2.

Finally, proponents of the informational loss function point to a general
theory of performance assessment in learning called the minimum description
length (MDL) principle. They argue that the size of the structures that a scheme
learns can be measured in bits of information, and if the same units are used
to measure the loss, the two can be combined in useful and powerful ways. We
return to this in Section 5.9.

Counting the cost

The evaluations that have been discussed so far do not take into account the
cost of making wrong decisions, wrong classifications. Optimizing classification
rate without considering the cost of the errors often leads to strange results. In
one case, machine learning was being used to determine the exact day that each
cow in a dairy herd was in estrus, or “in heat” Cows were identified by elec-
tronic ear tags, and various attributes were used such as milk volume and chem-
ical composition (recorded automatically by a high-tech milking machine), and
milking order—for cows are regular beasts and generally arrive in the milking



162

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

shed in the same order, except in unusual circumstances such as estrus. In a
modern dairy operation it’s important to know when a cow is ready: animals
are fertilized by artificial insemination and missing a cycle will delay calving
unnecessarily, causing complications down the line. In early experiments,
machine learning methods stubbornly predicted that each cow was never in
estrus. Like humans, cows have a menstrual cycle of approximately 30 days, so
this “null” rule is correct about 97% of the time—an impressive degree of accu-
racy in any agricultural domain! What was wanted, of course, were rules that
predicted the “in estrus” situation more accurately than the “not in estrus” one:
the costs of the two kinds of error were different. Evaluation by classification
accuracy tacitly assumes equal error costs.

Other examples in which errors cost different amounts include loan deci-
sions: the cost of lending to a defaulter is far greater than the lost-business cost
of refusing a loan to a nondefaulter. And oil-slick detection: the cost of failing
to detect an environment-threatening real slick is far greater than the cost of a
false alarm. And load forecasting: the cost of gearing up electricity generators
for a storm that doesn’t hit is far less than the cost of being caught completely
unprepared. And diagnosis: the cost of misidentifying problems with a machine
that turns out to be free of faults is less than the cost of overlooking problems
with one that is about to fail. And promotional mailing: the cost of sending junk
mail to a household that doesn’t respond is far less than the lost-business cost
of not sending it to a household that would have responded. Why—these are
all the examples of Chapter 1! In truth, you'd be hard pressed to find an appli-
cation in which the costs of different kinds of error were the same.

In the two-class case with classes yes and no, lend or not lend, mark a suspi-
cious patch as an oil slick or not, and so on, a single prediction has the four dif-
ferent possible outcomes shown in Table 5.3. The true positives (TP) and true
negatives (TN) are correct classifications. A false positive (FP) occurs when the
outcome is incorrectly predicted as yes (or positive) when it is actually no (neg-
ative). A false negative (FN) occurs when the outcome is incorrectly predicted
as negative when it is actually positive. The true positive rate is TP divided

Table 5.3 Different outcomes of a two-class prediction.

Predicted class

yes no
true false
es - .
Actual y positive negative
class
no false true
positive negative




5.7  COUNTING THE COST 163

by the total number of positives, which is TP + EN; the false positive rate is
FP divided by the total number of negatives, FP + TN. The overall success
rate is the number of correct classifications divided by the total number of
classifications:

TP+TN
TP+ TN+FP+FN’

Finally, the error rate is one minus this.

In a multiclass prediction, the result on a test set is often displayed as a two-
dimensional confusion matrix with a row and column for each class. Each matrix
element shows the number of test examples for which the actual class is the row
and the predicted class is the column. Good results correspond to large numbers
down the main diagonal and small, ideally zero, off-diagonal elements. Table
5.4(a) shows a numeric example with three classes. In this case the test set has
200 instances (the sum of the nine numbers in the matrix), and 88 + 40 + 12 =
140 of them are predicted correctly, so the success rate is 70%.

But is this a fair measure of overall success? How many agreements would
you expect by chance? This predictor predicts a total of 120 a’s, 60 b’s, and 20
c’s; what if you had a random predictor that predicted the same total numbers
of the three classes? The answer is shown in Table 5.4(b). Its first row divides
the 100 a’s in the test set into these overall proportions, and the second and
third rows do the same thing for the other two classes. Of course, the row and
column totals for this matrix are the same as before—the number of instances
hasn’t changed, and we have ensured that the random predictor predicts the
same number of a’s, b’s, and ¢’s as the actual predictor.

This random predictor gets 60 + 18 + 4 = 82 instances correct. A measure
called the Kappa statistic takes this expected figure into account by deducting
it from the predictor’s successes and expressing the result as a proportion
of the total for a perfect predictor, to yield 140 — 82 = 58 extra successes out

Table 5.4 Different outcomes of a three-class prediction: (a) actual and (b) expected.
Predicted class Predicted class
a b c Total a b c Total
Actual a 88 10 2 100 Actual a 60 30 10 100
class b 14 40 6 60 class b 36 18 6 60
c 18 10 12 40 c 24 12 4 40
Total 120 60 20 Total 120 60 20
(a) (b)




164

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

of a possible total of 200 — 82 = 118, or 49.2%. The maximum value of Kappa
is 100%, and the expected value for a random predictor with the same column
totals is zero. In summary, the Kappa statistic is used to measure the agreement
between predicted and observed categorizations of a dataset, while correcting
for agreement that occurs by chance. However, like the plain success rate, it does
not take costs into account.

Cost-sensitive classification

If the costs are known, they can be incorporated into a financial analysis of the
decision-making process. In the two-class case, in which the confusion matrix
is like that of Table 5.3, the two kinds of error—false positives and false nega-
tives—will have different costs; likewise, the two types of correct classification
may have different benefits. In the two-class case, costs can be summarized in
the form of a 2 X 2 matrix in which the diagonal elements represent the two
types of correct classification and the off-diagonal elements represent the two
types of error. In the multiclass case this generalizes to a square matrix whose
size is the number of classes, and again the diagonal elements represent the cost
of correct classification. Table 5.5(a) and (b) shows default cost matrixes for the
two- and three-class cases whose values simply give the number of errors: mis-
classification costs are all 1.

Taking the cost matrix into account replaces the success rate by the average
cost (or, thinking more positively, profit) per decision. Although we will not do
so here, a complete financial analysis of the decision-making process might also
take into account the cost of using the machine learning tool—including the
cost of gathering the training data—and the cost of using the model, or deci-
sion structure, that it produces—that is, the cost of determining the attributes
for the test instances. If all costs are known, and the projected number of the

Table 5.5 Default cost matrixes: (a) a two-class case and (b) a three-class case.
Predicted Predicted
class class
yes no a b c
Actual yes 0 1 Actual a 0 1 1
class no 1 0 class b 1 0 1
c 1 1 0
(a) (b)




5.7  COUNTING THE COST 165

different outcomes in the cost matrix can be estimated—say, using cross-
validation—it is straightforward to perform this kind of financial analysis.

Given a cost matrix, you can calculate the cost of a particular learned model
on a given test set just by summing the relevant elements of the cost matrix for
the model’s prediction for each test instance. Here, the costs are ignored when
making predictions, but taken into account when evaluating them.

If the model outputs the probability associated with each prediction, it can
be adjusted to minimize the expected cost of the predictions. Given a set of pre-
dicted probabilities for each outcome on a certain test instance, one normally
selects the most likely outcome. Instead, the model could predict the class with
the smallest expected misclassification cost. For example, suppose in a three-
class situation the model assigns the classes a, b, and ¢ to a test instance with
probabilities p,, p,, and p,., and the cost matrix is that in Table 5.5(b). If it pre-
dicts a, the expected cost of the prediction is obtained by multiplying the first
column of the matrix, [0,1,1], by the probability vector, [p, pi» p.l, yielding
py+ p.or 1 —p, because the three probabilities sum to 1. Similarly, the costs for
predicting the other two classes are 1 — p, and 1 — p.. For this cost matrix, choos-
ing the prediction with the lowest expected cost is the same as choosing the one
with the greatest probability. For a different cost matrix it might be different.

We have assumed that the learning method outputs probabilities, as Naive
Bayes does. Even if they do not normally output probabilities, most classifiers
can easily be adapted to compute them. In a decision tree, for example, the prob-
ability distribution for a test instance is just the distribution of classes at the
corresponding leaf.

Cost-sensitive learning

We have seen how a classifier, built without taking costs into consideration, can
be used to make predictions that are sensitive to the cost matrix. In this case,
costs are ignored at training time but used at prediction time. An alternative is
to do just the opposite: take the cost matrix into account during the training
process and ignore costs at prediction time. In principle, better performance
might be obtained if the classifier were tailored by the learning algorithm to the
cost matrix.

In the two-class situation, there is a simple and general way to make any
learning method cost sensitive. The idea is to generate training data with a dif-
ferent proportion of yes and no instances. Suppose that you artificially increase
the number of no instances by a factor of 10 and use the resulting dataset for
training. If the learning scheme is striving to minimize the number of errors, it
will come up with a decision structure that is biased toward avoiding errors on
the no instances, because such errors are effectively penalized 10-fold. If data



166

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

with the original proportion of no instances is used for testing, fewer errors will
be made on these than on yes instances—that is, there will be fewer false posi-
tives than false negatives—because false positives have been weighted 10 times
more heavily than false negatives. Varying the proportion of instances in the
training set is a general technique for building cost-sensitive classifiers.

One way to vary the proportion of training instances is to duplicate instances
in the dataset. However, many learning schemes allow instances to be weighted.
(As we mentioned in Section 3.2, this is a common technique for handling
missing values.) Instance weights are normally initialized to one. To build cost-
sensitive trees the weights can be initialized to the relative cost of the two kinds
of error, false positives and false negatives.

Lift charts

In practice, costs are rarely known with any degree of accuracy, and people will
want to ponder various scenarios. Imagine you're in the direct mailing business
and are contemplating a mass mailout of a promotional offer to 1,000,000
households—most of whom won’t respond, of course. Let us say that, based on
previous experience, the proportion who normally respond is known to be 0.1%
(1000 respondents). Suppose a data mining tool is available that, based on
known information about the households, identifies a subset of 100,000 for
which the response rate is 0.4% (400 respondents). It may well pay off to restrict
the mailout to these 100,000 households—that depends on the mailing cost
compared with the return gained for each response to the offer. In marketing
terminology, the increase in response rate, a factor of four in this case, is known
as the lift factor yielded by the learning tool. If you knew the costs, you could
determine the payoff implied by a particular lift factor.

But you probably want to evaluate other possibilities, too. The same data
mining scheme, with different parameter settings, may be able to identify
400,000 households for which the response rate will be 0.2% (800 respondents),
corresponding to a lift factor of two. Again, whether this would be a more prof-
itable target for the mailout can be calculated from the costs involved. It may
be necessary to factor in the cost of creating and using the model—including
collecting the information that is required to come up with the attribute values.
After all, if developing the model is very expensive, a mass mailing may be more
cost effective than a targeted one.

Given a learning method that outputs probabilities for the predicted class of
each member of the set of test instances (as Naive Bayes does), your job is to
find subsets of test instances that have a high proportion of positive instances,
higher than in the test set as a whole. To do this, the instances should be sorted
in descending order of predicted probability of yes. Then, to find a sample of a
given size with the greatest possible proportion of positive instances, just read



5.7  COUNTING THE COST 167

Table 5.6 Data for a lift chart.
Rank Predicted Actual class Rank Predicted Actual class
probability probability
1 0.95 yes " 0.77 no
2 0.93 yes 12 0.76 yes
3 0.93 no 13 0.73 yes
4 0.88 yes 14 0.65 no
5 0.86 yes 15 0.63 yes
6 0.85 yes 16 0.58 no
7 0.82 yes 17 0.56 yes
8 0.80 yes 18 0.49 no
9 0.80 no 19 0.48 yes
10 0.79 yes

the requisite number of instances off the list, starting at the top. If each test
instance’s class is known, you can calculate the lift factor by simply counting the
number of positive instances that the sample includes, dividing by the sample
size to obtain a success proportion and dividing by the success proportion for
the complete test set to determine the lift factor.

Table 5.6 shows an example for a small dataset with 150 instances, of which
50 are yes responses—an overall success proportion of 33%. The instances have
been sorted in descending probability order according to the predicted proba-
bility of a yes response. The first instance is the one that the learning scheme
thinks is most likely to be positive, the second is the next most likely, and so on.
The numeric values of the probabilities are unimportant: rank is the only thing
that matters. With each rank is given the actual class of the instance. Thus the
learning method was right about items 1 and 2—they are indeed positives—but
wrong about item 3, which turned out to be a negative. Now, if you were seeking
the most promising sample of size 10 but only knew the predicted probabilities
and not the actual classes, your best bet would be the top ten ranking instances.
Eight of these are positive, so the success proportion for this sample is 80%, cor-
responding to a lift factor of four.

If you knew the different costs involved, you could work them out for each
sample size and choose the most profitable. But a graphical depiction of the
various possibilities will often be far more revealing than presenting a single
“optimal” decision. Repeating the preceding operation for different-sized
samples allows you to plot a lift chart like that of Figure 5.1. The horizontal axis
shows the sample size as a proportion of the total possible mailout. The verti-
cal axis shows the number of responses obtained. The lower left and upper right
points correspond to no mailout at all, with a response of 0, and a full mailout,
with a response of 1000. The diagonal line gives the expected result for different-



168

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

1000

8OO fromrrmrsmrmsommmeneseseee ;
number of :
respondents

600 +
400 f---eeeer /

200 +

0 20% 40% 60% 80% 100%
sample size

Figure 5.1 A hypothetical lift chart.

sized random samples. But we do not choose random samples; we choose those
instances which, according to the data mining tool, are most likely to generate
a positive response. These correspond to the upper line, which is derived by
summing the actual responses over the corresponding percentage of the instance
list sorted in probability order. The two particular scenarios described previ-
ously are marked: a 10% mailout that yields 400 respondents and a 40% one
that yields 800.

Where youd like to be in a lift chart is near the upper left-hand corner: at
the very best, 1000 responses from a mailout of just 1000, where you send only
to those households that will respond and are rewarded with a 100% success
rate. Any selection procedure worthy of the name will keep you above the diag-
onal—otherwise, you'd be seeing a response that was worse than for random
sampling. So the operating part of the diagram is the upper triangle, and the
farther to the northwest the better.

ROC curves

Lift charts are a valuable tool, widely used in marketing. They are closely related
to a graphical technique for evaluating data mining schemes known as ROC
curves, which are used in just the same situation as the preceding one, in which
the learner is trying to select samples of test instances that have a high propor-
tion of positives. The acronym stands for receiver operating characteristic, a term
used in signal detection to characterize the tradeoff between hit rate and false
alarm rate over a noisy channel. ROC curves depict the performance of a clas-
sifier without regard to class distribution or error costs. They plot the number



5.7  COUNTING THE COST 169

100%

80% - -5
" 60% - e
true positives e

40% - /7

20% - 4

0 T T T T
0 20% 40% 60% 80% 100%

false positives
Figure 52 A sample ROC curve.

of positives included in the sample on the vertical axis, expressed as a percent-
age of the total number of positives, against the number of negatives included
in the sample, expressed as a percentage of the total number of negatives, on
the horizontal axis. The vertical axis is the same as that of the lift chart except
that it is expressed as a percentage. The horizontal axis is slightly different—
number of negatives rather than sample size. However, in direct marketing sit-
uations in which the proportion of positives is very small anyway (like 0.1%),
there is negligible difference between the size of a sample and the number of
negatives it contains, so the ROC curve and lift chart look very similar. As with
lift charts, the northwest corner is the place to be.

Figure 5.2 shows an example ROC curve—the jagged line—for the sample of
test data in Table 5.6. You can follow it along with the table. From the origin,
go up two (two positives), along one (one negative), up five (five positives),
along one (one negative), up one, along one, up two, and so on. Each point cor-
responds to drawing a line at a certain position on the ranked list, counting the
yes’s and no’s above it, and plotting them vertically and horizontally, respectively.
As you go farther down the list, corresponding to a larger sample, the number
of positives and negatives both increase.

The jagged ROC line in Figure 5.2 depends intimately on the details of the
particular sample of test data. This sample dependence can be reduced by apply-
ing cross-validation. For each different number of no’s—that is, each position
along the horizontal axis—take just enough of the highest-ranked instances to
include that number of n0’s, and count the number of yes’s they contain. Finally,
average that number over different folds of the cross-validation. The result is a



170

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

smooth curve like that in Figure 5.2—although in reality such curves do not
generally look quite so smooth.

This is just one way of using cross-validation to generate ROC curves. A
simpler approach is to collect the predicted probabilities for all the various test
sets (of which there are 10 in a 10-fold cross-validation), along with the true
class labels of the corresponding instances, and generate a single ranked list
based on this data. This assumes that the probability estimates from the classi-
fiers built from the different training sets are all based on equally sized random
samples of the data. It is not clear which method is preferable. However, the
latter method is easier to implement.

If the learning scheme does not allow the instances to be ordered, you can
first make it cost sensitive as described earlier. For each fold of a 10-fold cross-
validation, weight the instances for a selection of different cost ratios, train the
scheme on each weighted set, count the true positives and false positives in the
test set, and plot the resulting point on the ROC axes. (It doesn’t matter whether
the test set is weighted or not because the axes in the ROC diagram are expressed
as the percentage of true and false positives.) However, for inherently cost-
sensitive probabilistic classifiers such as Naive Bayes it is far more costly than
the method described previously because it involves a separate learning problem
for every point on the curve.

It is instructive to look at cross-validated ROC curves obtained using differ-
ent learning methods. For example, in Figure 5.3, method A excels if a small,
focused sample is sought; that is, if you are working toward the left-hand side
of the graph. Clearly, if you aim to cover just 40% of the true positives you

100%
B
80% +
60% +
true positives
A
40% +
20% +
0 ‘ ‘ ‘ ‘
0 20% 40% 60% 80% 100%

false positives

Figure 5.3 ROC curves for two learning methods.



5.7  COUNTING THE COST 111

should choose method A, which gives a false positive rate of around 5%, rather
than method B, which gives more than 20% false positives. But method B excels
if you are planning a large sample: if you are covering 80% of the true positives,
method B will give a false positive rate of 60% as compared with method A’s
80%. The shaded area is called the convex hull of the two curves, and you should
always operate at a point that lies on the upper boundary of the convex hull.

What about the region in the middle where neither method A nor method
B lies on the convex hull? It is a remarkable fact that you can get anywhere in
the shaded region by combining methods A and B and using them at random
with appropriate probabilities. To see this, choose a particular probability cutoff
for method A that gives true and false positive rates of ¢, and f,, respectively,
and another cutoff for method B that gives t; and fz. If you use these two
schemes at random with probability p and g, where p + g = 1, then you will get
true and false positive rates of p.t, + q.tz and p.fy + q.fz. This represents a point
lying on the straight line joining the points (#,,f1) and (#3f3), and by varying p
and g you can trace out the entire line between these two points. Using this
device, the entire shaded region can be reached. Only if a particular scheme gen-
erates a point that lies on the convex hull should it be used alone: otherwise, it
would always be better to use a combination of classifiers corresponding to a
point that lies on the convex hull.

Recall-precision curves

People have grappled with the fundamental tradeoff illustrated by lift charts and
ROC curves in a wide variety of domains. Information retrieval is a good
example. Given a query, a Web search engine produces a list of hits that repre-
sent documents supposedly relevant to the query. Compare one system that
locates 100 documents, 40 of which are relevant, with another that locates 400
documents, 80 of which are relevant. Which is better? The answer should now
be obvious: it depends on the relative cost of false positives, documents that are
returned that aren’t relevant, and false negatives, documents that are relevant
that aren’t returned. Information retrieval researchers define parameters called
recall and precision:

number of documents retrieved that are relevant

recall =
total number of documents that are relevant

number of documents retrieved that are relevant

precision = X
total number of documents that are retrieved

For example, if the list of yes’s and #o’s in Table 5.6 represented a ranked list of
retrieved documents and whether they were relevant or not, and the entire
collection contained a total of 40 relevant documents, then “recall at 10” would



112

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

Table 5.7 Different measures used to evaluate the false positive versus the false
negative tradeoff.
Domain Plot Axes Explanation of axes
lift chart marketing TP vs. TP number of true positives
subset size
. . subset size &XWU%
TP+FP+TN+FN
- TP
ROC curve communications TP rate vs. TP rate p= x100%
FP rate TPF“;FN
FP rate fo= x100%
P
recall—precision information recall vs. recall same as TP rate tp
curve retrieval recision
P precision l><100%
TP+FP

refer to recall for the top ten documents, that is, 8/40 = 5%; while “precision at
10” would be 8/10 = 80%. Information retrieval experts use recall-precision
curves that plot one against the other, for different numbers of retrieved docu-
ments, in just the same way as ROC curves and lift charts—except that because
the axes are different, the curves are hyperbolic in shape and the desired oper-
ating point is toward the upper right.

Discussion

Table 5.7 summarizes the three different ways we have met of evaluating the
same basic tradeoff; TP, FP, TN, and FN are the number of true positives, false
positives, true negatives, and false negatives, respectively. You want to choose a
set of instances with a high proportion of yes instances and a high coverage of
the yes instances: you can increase the proportion by (conservatively) using a
smaller coverage, or (liberally) increase the coverage at the expense of the pro-
portion. Different techniques give different tradeoffs, and can be plotted as dif-
ferent lines on any of these graphical charts.

People also seek single measures that characterize performance. Two that are
used in information retrieval are 3-point average recall, which gives the average
precision obtained at recall values of 20%, 50%, and 80%, and 11-point average
recall, which gives the average precision obtained at recall values of 0%, 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. Also used in informa-
tion retrieval is the F-measure, which is:

2 X recall X precision _ 2-TP
recall + precision 2-TP+FP+FN




5.7  COUNTING THE COST 113

Different terms are used in different domains. Medics, for example, talk about
the sensitivity and specificity of diagnostic tests. Sensitivity refers to the propor-
tion of people with disease who have a positive test result, that is, tp. Specificity
refers to the proportion of people without disease who have a negative test
result, which is 1 — fp. Sometimes the product of these is used as an overall
measure:

TP-TN
(TP+EN)- (FP+TN)

sensitivity X specificity = tp(1— fp) =

Finally, of course, there is our old friend the success rate:

TP+ TN
TP+FP+TN+FN’

To summarize ROC curves in a single quantity, people sometimes use the area
under the curve (AUC) because, roughly speaking the larger the area the better
the model. The area also has a nice interpretation as the probability that the
classifier ranks a randomly chosen positive instance above a randomly chosen
negative one. Although such measures may be useful if costs and class distri-
butions are unknown and one method must be chosen to handle all situations,
no single number is able to capture the tradeoff. That can only be done by
two-dimensional depictions such as lift charts, ROC curves, and recall-preci-
sion diagrams.

Cost curves

ROC curves and their relatives are very useful for exploring the tradeoffs among
different classifiers over a range of costs. However, they are not ideal for evalu-
ating machine learning models in situations with known error costs. For
example, it is not easy to read off the expected cost of a classifier for a fixed cost
matrix and class distribution. Neither can you easily determine the ranges of
applicability of different classifiers. For example, from the crossover point
between the two ROC curves in Figure 5.3 it is hard to tell for what cost and
class distributions classifier A outperforms classifier B.

Cost curves are a different kind of display on which a single classifier corre-
sponds to a straight line that shows how the performance varies as the class dis-
tribution changes. Again, they work best in the two-class case, although you can
always make a multiclass problem into a two-class one by singling out one class
and evaluating it against the remaining ones.

Figure 5.4(a) plots the expected error against the probability of one of the
classes. You could imagine adjusting this probability by resampling the test set
in a nonuniform way. We denote the two classes using + and —. The diagonals
show the performance of two extreme classifiers: one always predicts +, giving



]74 CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

always wrong

2 [ 7
\\ ,,’
N always pick + 2
\ " y p 7’ '
N : . :
N , always pick —
V'Y ,
\\ ’
\ d
N
expected N L7
error N7

- S¢
0.5 N A

fn

pr i always right N

0 - | -

0 0.5 1
probability p [+]

(a)

Figure 5.4 Effect of varying the probability threshold: (a) the error curve and (b) the
cost curve.

an expected error of one if the dataset contains no + instances and zero if all its
instances are +; the other always predicts —, giving the opposite performance.
The dashed horizontal line shows the performance of the classifier that is always
wrong, and the X-axis itself represents the classifier that is always correct. In
practice, of course, neither of these is realizable. Good classifiers have low
error rates, so where you want to be is as close to the bottom of the diagram as
possible.

The line marked A represents the error rate of a particular classifier. If you
calculate its performance on a certain test set, its false positive rate fp is its
expected error on a subsample of the test set that contains only negative exam-
ples (p[+] = 0), and its false negative rate fn is the error on a subsample that
contains only positive examples (p[+] = 1). These are the values of the inter-
cepts at the left and right, respectively. You can see immediately from the plot
that if p[+] is smaller than about 0.2, predictor A is outperformed by the extreme
classifier that always predicts —, and if it is larger than about 0.65, the other
extreme classifier is better.



5.7  COUNTING THE COST 115

0.5
A
normalized
expected
cost o5
fn
fo
! \
0 T |
0 0.5 1
(b) probability cost function p¢ [+]

Figure 5.4 (continued)

So far we have not taken costs into account, or rather we have used the default
cost matrix in which all errors cost the same. Cost curves, which do take cost
into account, look very similar—very similar indeed—but the axes are differ-
ent. Figure 5.4(b) shows a cost curve for the same classifier A (note that the ver-
tical scale has been enlarged, for convenience, and ignore the gray lines for now).
It plots the expected cost of using A against the probability cost function, which
is a distorted version of p[+] that retains the same extremes: zero when p[+] =
0 and one when p[+] = 1. Denote by C[+|-] the cost of predicting + when the
instance is actually —, and the reverse by C[—|+]. Then the axes of Figure 5.4(b)
are

Normalized expected cost= fn X pc[+]+ fp X (1— pc[+])
plHCIH]
pl+ICIH-1+ pl-1CT—H+]
We are assuming here that correct predictions have no cost: C[+[+] = C[—-|-] =
0. If that is not the case the formulas are a little more complex.

The maximum value that the normalized expected cost can have is 1—that
is why it is “normalized.” One nice thing about cost curves is that the extreme

Probability cost function p.[+]=



176

5.8

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

cost values at the left and right sides of the graph are fp and fn, just as they are
for the error curve, so you can draw the cost curve for any classifier very easily.

Figure 5.4(b) also shows classifier B, whose expected cost remains the same
across the range—that is, its false positive and false negative rates are equal. As
you can see, it outperforms classifier A if the probability cost function exceeds
about 0.45, and knowing the costs we could easily work out what this corre-
sponds to in terms of class distribution. In situations that involve different class
distributions, cost curves make it easy to tell when one classifier will outper-
form another.

In what circumstances might this be useful? To return to the example of pre-
dicting when cows will be in estrus, their 30-day cycle, or 1/30 prior probabil-
ity, is unlikely to vary greatly (barring a genetic cataclysm!). But a particular
herd may have different proportions of cows that are likely to reach estrus in
any given week, perhaps synchronized with—who knows?—the phase of the
moon. Then, different classifiers would be appropriate at different times. In the
oil spill example, different batches of data may have different spill probabilities.
In these situations cost curves can help to show which classifier to use when.

Each point on a lift chart, ROC curve, or recall-precision curve represents a
classifier, typically obtained using different threshold values for a method such
as Naive Bayes. Cost curves represent each classifier using a straight line, and a
suite of classifiers will sweep out a curved envelope whose lower limit shows
how well that type of classifier can do if the parameter is well chosen. Figure
5.4(b) indicates this with a few gray lines. If the process were continued, it would
sweep out the dotted parabolic curve.

The operating region of classifier B ranges from a probability cost value of
about 0.25 to a value of about 0.75. Outside this region, classifier B is outper-
formed by the trivial classifiers represented by dashed lines. Suppose we decide
to use classifier B within this range and the appropriate trivial classifier below
and above it. All points on the parabola are certainly better than this scheme.
But how much better? It is hard to answer such questions from an ROC curve,
but the cost curve makes them easy. The performance difference is negligible if
the probability cost value is around 0.5, and below a value of about 0.2 and
above 0.8 it is barely perceptible. The greatest difference occurs at probability
cost values of 0.25 and 0.75 and is about 0.04, or 4% of the maximum possible
cost figure.

Evaluating numeric prediction

All the evaluation measures we have described pertain to classification situa-
tions rather than numeric prediction situations. The basic principles—using an
independent test set rather than the training set for performance evaluation, the



5.8 EVALUATING NUMERIC PREDICTION ]77

holdout method, and cross-validation—apply equally well to numeric predic-
tion. But the basic quality measure offered by the error rate is no longer appro-
priate: errors are not simply present or absent; they come in different sizes.

Several alternative measures, summarized in Table 5.8, can be used to evalu-
ate the success of numeric prediction. The predicted values on the test instances
are py, P, - - - Pn; the actual values are ay, a,, . . ., a,. Notice that p; means some-
thing very different here from what it did in the last section: there it was the
probability that a particular prediction was in the ith class; here it refers to the
numeric value of the prediction for the ith test instance.

Mean-squared error is the principal and most commonly used measure;
sometimes the square root is taken to give it the same dimensions as the pre-
dicted value itself. Many mathematical techniques (such as linear regression,
explained in Chapter 4) use the mean-squared error because it tends to be the
easiest measure to manipulate mathematically: it is, as mathematicians say, “well
behaved.” However, here we are considering it as a performance measure: all the
performance measures are easy to calculate, so mean-squared error has no par-
ticular advantage. The question is, is it an appropriate measure for the task at
hand?

Mean absolute error is an alternative: just average the magnitude of the indi-
vidual errors without taking account of their sign. Mean-squared error tends to
exaggerate the effect of outliers—instances whose prediction error is larger than
the others—but absolute error does not have this effect: all sizes of error are
treated evenly according to their magnitude.

Sometimes it is the relative rather than absolute error values that are of impor-
tance. For example, if a 10% error is equally important whether it is an error of
50 in a prediction of 500 or an error of 0.2 in a prediction of 2, then averages
of absolute error will be meaningless: relative errors are appropriate. This effect
would be taken into account by using the relative errors in the mean-squared
error calculation or the mean absolute error calculation.

Relative squared error in Table 5.8 refers to something quite different. The
error is made relative to what it would have been if a simple predictor had been
used. The simple predictor in question is just the average of the actual
values from the training data. Thus relative squared error takes the total squared
error and normalizes it by dividing by the total squared error of the default
predictor.

The next error measure goes by the glorious name of relative absolute error
and is just the total absolute error, with the same kind of normalization. In these
three relative error measures, the errors are normalized by the error of the
simple predictor that predicts average values.

The final measure in Table 5.8 is the correlation coefficient, which measures
the statistical correlation between the a’s and the p’s. The correlation coefficient
ranges from 1 for perfectly correlated results, through 0 when there is no cor-



178

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

Table 5.8 Performance measures for numeric prediction*.

Performance measure Formula

(Pr—a) +...+(p,—a,)
n

mean-squared error

(pi—a) +..+(p,—a,)
n
|pr—ail+...+1p, —ail
n

(p—a) +...+(p,—a,)
(@-3)+..+@,—-a)
(p—a) +...+(p,—a,)
(@-3) +...+@,—-a)
v —al+...+1p, —anl
lay—al+...+|a,—a|

root mean-squared error

mean absolute error

) _ 1
relative squared error , where a=—>" 3
n !

root relative squared error \/

relative absolute error

. - SPA Z(p/ _E)(af _5)
———, where Spy==24— ———,
correlation coefficient N PA P

i /—_2 _31—52

*p are predicted values and a are actual values.

relation, to —1 when the results are perfectly correlated negatively. Of course,
negative values should not occur for reasonable prediction methods. Correla-
tion is slightly different from the other measures because it is scale independent
in that, if you take a particular set of predictions, the error is unchanged if all
the predictions are multiplied by a constant factor and the actual values are left
unchanged. This factor appears in every term of Sp, in the numerator and in
every term of Sp in the denominator, thus canceling out. (This is not true for
the relative error figures, despite normalization: if you multiply all the predic-
tions by a large constant, then the difference between the predicted and the
actual values will change dramatically, as will the percentage errors.) It is also
different in that good performance leads to a large value of the correlation coef-
ficient, whereas because the other methods measure error, good performance is
indicated by small values.

Which of these measures is appropriate in any given situation is a matter that
can only be determined by studying the application itself. What are we trying
to minimize? What is the cost of different kinds of error? Often it is not easy to
decide. The squared error measures and root squared error measures weigh large



59

5.9 THE MINIMUM DESCRIPTION LENGTH PRINCIPLE ]79

Table 5.9 Performance measures for four numeric prediction models.
A B C D
root mean-squared error 67.8 91.7 63.3 57.4
mean absolute error 41.3 38.5 334 29.2
root relative squared error 42.2% 57.2% 39.4% 35.8%
relative absolute error 43.1% 40.1% 34.8% 30.4%
correlation coefficient 0.88 0.88 0.89 0.91

discrepancies much more heavily than small ones, whereas the absolute error
measures do not. Taking the square root (root mean-squared error) just reduces
the figure to have the same dimensionality as the quantity being predicted. The
relative error figures try to compensate for the basic predictability or unpre-
dictability of the output variable: if it tends to lie fairly close to its average value,
then you expect prediction to be good and the relative figure compensate for
this. Otherwise, if the error figure in one situation is far greater than that in
another situation, it may be because the quantity in the first situation is inher-
ently more variable and therefore harder to predict, not because the predictor
is any worse.

Fortunately, it turns out that in most practical situations the best numeric
prediction method is still the best no matter which error measure is used. For
example, Table 5.9 shows the result of four different numeric prediction tech-
niques on a given dataset, measured using cross-validation. Method D is the best
according to all five metrics: it has the smallest value for each error measure and
the largest correlation coefficient. Method C is the second best by all five metrics.
The performance of methods A and B is open to dispute: they have the same
correlation coefficient, method A is better than method B according to both
mean-squared and relative squared errors, and the reverse is true for both
absolute and relative absolute error. It is likely that the extra emphasis that the
squaring operation gives to outliers accounts for the differences in this case.

When comparing two different learning schemes that involve numeric pre-
diction, the methodology developed in Section 5.5 still applies. The only dif-
ference is that success rate is replaced by the appropriate performance measure
(e.g., root mean-squared error) when performing the significance test.

The minimum description length principle

What is learned by a machine learning method is a kind of “theory” of the
domain from which the examples are drawn, a theory that is predictive in that



180

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

it is capable of generating new facts about the domain—in other words, the class
of unseen instances. Theory is a rather grandiose term: we are using it here only
in the sense of a predictive model. Thus theories might comprise decision trees
or sets of rules—they don’t have to be any more “theoretical” than that.

There is a long-standing tradition in science that, other things being equal,
simple theories are preferable to complex ones. This is known as Occam’s razor
after the medieval philosopher William of Occam (or Ockham). Occam’s razor
shaves philosophical hairs off a theory. The idea is that the best scientific theory
is the smallest one that explains all the facts. As Albert Einstein is reputed to
have said, “Everything should be made as simple as possible, but no simpler.”
Of course, quite a lot is hidden in the phrase “other things being equal,” and it
can be hard to assess objectively whether a particular theory really does “explain”
all the facts on which it is based—that’s what controversy in science is all about.

In our case, in machine learning, most theories make errors. If what is learned
is a theory, then the errors it makes are like exceptions to the theory. One way
to ensure that other things are equal is to insist that the information embodied
in the exceptions is included as part of the theory when its “simplicity” is judged.

Imagine an imperfect theory for which there are a few exceptions. Not all the
data is explained by the theory, but most is. What we do is simply adjoin the
exceptions to the theory, specifying them explicitly as exceptions. This new
theory is larger: that is a price that, quite justifiably, has to be paid for its inabil-
ity to explain all the data. However, it may be that the simplicity—is it too much
to call it elegance?—of the original theory is sufficient to outweigh the fact that
it does not quite explain everything compared with a large, baroque theory that
is more comprehensive and accurate.

For example, if Kepler’s three laws of planetary motion did not at the time
account for the known data quite so well as Copernicus’s latest refinement of
the Ptolemaic theory of epicycles, they had the advantage of being far less
complex, and that would have justified any slight apparent inaccuracy. Kepler
was well aware of the benefits of having a theory that was compact, despite the
fact that his theory violated his own aesthetic sense because it depended on
“ovals” rather than pure circular motion. He expressed this in a forceful
metaphor: “T have cleared the Augean stables of astronomy of cycles and spirals,
and left behind me only a single cartload of dung.”

The minimum description length or MDL principle takes the stance that the
best theory for a body of data is one that minimizes the size of the theory plus
the amount of information necessary to specify the exceptions relative to the
theory—the smallest cartload of dung. In statistical estimation theory, this has
been applied successfully to various parameter-fitting problems. It applies to
machine learning as follows: given a set of instances, a learning method infers
a theory—Dbe it ever so simple; unworthy, perhaps, to be called a “theory”—from
them. Using a metaphor of communication, imagine that the instances are to



5.9 THE MINIMUM DESCRIPTION LENGTH PRINCIPLE ]H]

be transmitted through a noiseless channel. Any similarity that is detected
among them can be exploited to give a more compact coding. According to the
MDL principle, the best generalization is the one that minimizes the number of
bits required to communicate the generalization, along with the examples from
which it was made.

Now the connection with the informational loss function introduced in
Section 5.6 should be starting to emerge. That function measures the error in
terms of the number of bits required to transmit the instances, given the prob-
abilistic predictions made by the theory. According to the MDL principle we
need to add to this the “size” of the theory in bits, suitably encoded, to obtain
an overall figure for complexity. However, the MDL principle refers to the
information required to transmit the examples from which the theory was
formed, that is, the training instances—not a test set. The overfitting problem
is avoided because a complex theory that overfits will be penalized relative to a
simple one by virtue of the fact that it takes more bits to encode. At one extreme
is a very complex, highly overfitted theory that makes no errors on the training
set. At the other is a very simple theory—the null theory—which does not help
at all when transmitting the training set. And in between are theories of inter-
mediate complexity, which make probabilistic predictions that are imperfect
and need to be corrected by transmitting some information about the training
set. The MDL principle provides a means of comparing all these possibilities on
an equal footing to see which is the best. We have found the holy grail: an eval-
uation scheme that works on the training set alone and does not need a sepa-
rate test set. But the devil is in the details, as we will see.

Suppose a learning method comes up with a theory T, based on a training
set E of examples, that requires a certain number of bits L[T] to encode (L for
length). Given the theory, the training set itself can be encoded in a certain
number of bits, L[E|T]. L[E|T] is in fact given by the informational loss func-
tion summed over all members of the training set. Then the total description
length of theory plus training set is

L[T]+L[E|T]

and the MDL principle recommends choosing the theory T that minimizes this
sum.

There is a remarkable connection between the MDL principle and basic prob-
ability theory. Given a training set E, we seek the “most likely” theory T, that is,
the theory for which the a posteriori probability Pr[T|E]—the probability after
the examples have been seen—is maximized. Bayes’s rule of conditional prob-
ability, the same rule that we encountered in Section 4.2, dictates that

Pr[E|T]Pr[T]

Pr[T|E]= PrE]



182

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

Taking negative logarithms,
—logPr[T|E] = —logPr[E[T]—logPr[T]+log Pr[E].

Maximizing the probability is the same as minimizing its negative logarithm.
Now (as we saw in Section 5.6) the number of bits required to code something
is just the negative logarithm of its probability. Furthermore, the final term,
log Pr[E], depends solely on the training set and not on the learning method.
Thus choosing the theory that maximizes the probability Pr[T]E] is tantamount
to choosing the theory that minimizes

L[E[T]+L[T]

—in other words, the MDL principle!

This astonishing correspondence with the notion of maximizing the a
posteriori probability of a theory after the training set has been taken into
account gives credence to the MDL principle. But it also points out where
the problems will sprout when the MDL principle is applied in practice. The
difficulty with applying Bayes’s rule directly is in finding a suitable prior prob-
ability distribution Pr[T] for the theory. In the MDL formulation, that trans-
lates into finding how to code the theory T into bits in the most efficient way.
There are many ways of coding things, and they all depend on presuppositions
that must be shared by encoder and decoder. If you know in advance that the
theory is going to take a certain form, you can use that information to encode
it more efficiently. How are you going to actually encode T? The devil is in the
details.

Encoding E with respect to T to obtain L[E|T] seems a little more straight-
forward: we have already met the informational loss function. But actually,
when you encode one member of the training set after another, you are encod-
ing a sequence rather than a set. It is not necessary to transmit the training set
in any particular order, and it ought to be possible to use that fact to reduce the
number of bits required. Often, this is simply approximated by subtracting
log n! (where n is the number of elements in E), which is the number of bits
needed to specify a particular permutation of the training set (and because this
is the same for all theories, it doesn’t actually affect the comparison between
them). But one can imagine using the frequency of the individual errors to
reduce the number of bits needed to code them. Of course, the more sophisti-
cated the method that is used to code the errors, the less the need for a theory
in the first place—so whether a theory is justified or not depends to some extent
on how the errors are coded. The details, the details.

We will not go into the details of different coding methods here. The whole
question of using the MDL principle to evaluate a learning scheme based solely
on the training data is an area of active research and vocal disagreement among
researchers.



5.10

5.10 APPLYING THE MDL PRINCIPLE TO CLUSTERING ]HH

We end this section as we began, on a philosophical note. It is important to
appreciate that Occam’s razor, the preference of simple theories over complex
ones, has the status of a philosophical position or “axiom” rather than some-
thing that can be proved from first principles. Although it may seem self-evident
to us, this is a function of our education and the times we live in. A preference
for simplicity is—or may be—culture specific rather than absolute.

The Greek philosopher Epicurus (who enjoyed good food and wine and
supposedly advocated sensual pleasure—in moderation—as the highest good)
expressed almost the opposite sentiment. His principle of multiple explanations
advises “if more than one theory is consistent with the data, keep them all” on
the basis that if several explanations are equally in agreement, it may be possi-
ble to achieve a higher degree of precision by using them together—and anyway,
it would be unscientific to discard some arbitrarily. This brings to mind
instance-based learning, in which all the evidence is retained to provide robust
predictions, and resonates strongly with decision combination methods such as
bagging and boosting (described in Chapter 7) that actually do gain predictive
power by using multiple explanations together.

Applying the MDL principle to clustering

One of the nice things about the MDL principle is that unlike other evaluation
criteria, it can be applied under widely different circumstances. Although in
some sense equivalent to Bayes’s rule in that, as we saw previously, devising a
coding scheme for theories is tantamount to assigning them a prior probability
distribution, schemes for coding are somehow far more tangible and easier to
think about in concrete terms than intuitive prior probabilities. To illustrate this
we will briefly describe—without entering into coding details—how you might
go about applying the MDL principle to clustering.

Clustering seems intrinsically difficult to evaluate. Whereas classification or
association learning has an objective criterion of success—predictions made on
test cases are either right or wrong—this is not so with clustering. It seems that
the only realistic evaluation is whether the result of learning—the clustering—
proves useful in the application context. (It is worth pointing out that really this
is the case for all types of learning, not just clustering.)

Despite this, clustering can be evaluated from a description length perspec-
tive. Suppose a cluster-learning technique divides the training set E into k clus-
ters. If these clusters are natural ones, it should be possible to use them to encode
E more efficiently. The best clustering will support the most efficient encoding.

One way of encoding the instances in E with respect to a given clustering is
to start by encoding the cluster centers—the average value of each attribute over
all instances in the cluster. Then, for each instance in E, transmit which cluster



184

511

CHAPTER 5 | CREDIBILITY: EVALUATING WHAT’S BEEN LEARNED

it belongs to (in log,k bits) followed by its attribute values with respect to the
cluster center—perhaps as the numeric difference of each attribute value from
the center. Couched as it is in terms of averages and differences, this descrip-
tion presupposes numeric attributes and raises thorny questions about how
to code numbers efficiently. Nominal attributes can be handled in a similar
manner: for each cluster there is a probability distribution for the attribute
values, and the distributions are different for different clusters. The coding issue
becomes more straightforward: attribute values are coded with respect to the
relevant probability distribution, a standard operation in data compression.

If the data exhibits extremely strong clustering, this technique will result in
a smaller description length than simply transmitting the elements of E without
any clusters. However, if the clustering effect is not so strong, it will likely
increase rather than decrease the description length. The overhead of transmit-
ting cluster-specific distributions for attribute values will more than offset the
advantage gained by encoding each training instance relative to the cluster it lies
in. This is where more sophisticated coding techniques come in. Once the cluster
centers have been communicated, it is possible to transmit cluster-specific prob-
ability distributions adaptively, in tandem with the relevant instances: the
instances themselves help to define the probability distributions, and the prob-
ability distributions help to define the instances. We will not venture further
into coding techniques here. The point is that the MDL formulation, properly
applied, may be flexible enough to support the evaluation of clustering. But
actually doing it satisfactorily in practice is not easy.

Further reading

The statistical basis of confidence tests is well covered in most statistics texts,
which also give tables of the normal distribution and Student’s distribution. (We
use an excellent course text, Wild and Seber 1995, which we recommend very
strongly if you can get hold of it.) “Student” is the nom de plume of a statisti-
cian called William Gosset, who obtained a post as a chemist in the Guinness
brewery in Dublin, Ireland, in 1899 and invented the f-test to handle small
samples for quality control in brewing. The corrected resampled t-test was pro-
posed by Nadeau and Bengio (2003). Cross-validation is a standard statistical
technique, and its application in machine learning has been extensively investi-
gated and compared with the bootstrap by Kohavi (1995a). The bootstrap tech-
nique itself is thoroughly covered by Efron and Tibshirani (1993).

The Kappa statistic was introduced by Cohen (1960). Ting (2002) has inves-
tigated a heuristic way of generalizing to the multiclass case the algorithm given
in Section 5.7 to make two-class learning schemes cost sensitive. Lift charts are
described by Berry and Linoff (1997). The use of ROC analysis in signal detec-



5.11 FURTHER READING ] 35

tion theory is covered by Egan (1975); this work has been extended for visual-
izing and analyzing the behavior of diagnostic systems (Swets 1988) and is also
used in medicine (Beck and Schultz 1986). Provost and Fawcett (1997) brought
the idea of ROC analysis to the attention of the machine learning and data
mining community. Witten et al. (1999b) explain the use of recall and precision
in information retrieval systems; the F-measure is described by van Rijsbergen
(1979). Drummond and Holte (2000) introduced cost curves and investigated
their properties.

The MDL principle was formulated by Rissanen (1985). Kepler’s discovery of
his economical three laws of planetary motion, and his doubts about them, are
recounted by Koestler (1964).

Epicurus’s principle of multiple explanations is mentioned by Li and Vityani
(1992), quoting from Asmis (1984).






mplementations:

leal Machine Learning Schemes

We have seen the basic ideas of several machine learning methods and studied
in detail how to assess their performance on practical data mining problems.
Now we are well prepared to look at real, industrial-strength, machine learning
algorithms. Our aim is to explain these algorithms both at a conceptual level
and with a fair amount of technical detail so that you can understand them fully
and appreciate the key implementation issues that arise.

In truth, there is a world of difference between the simplistic methods
described in Chapter 4 and the actual algorithms that are widely used in prac-
tice. The principles are the same. So are the inputs and outputs—methods of
knowledge representation. But the algorithms are far more complex, principally
because they have to deal robustly and sensibly with real-world problems such
as numeric attributes, missing values, and—most challenging of all—noisy data.
To understand how the various methods cope with noise, we will have to draw
on some of the statistical knowledge that we learned in Chapter 5.

Chapter 4 opened with an explanation of how to infer rudimentary rules and
went on to examine statistical modeling and decision trees. Then we returned

187



188

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

to rule induction and continued with association rules, linear models, the
nearest-neighbor method of instance-based learning, and clustering. The
present chapter develops all these topics except association rules, which have
already been covered in adequate detail.

We begin with decision tree induction and work up to a full description of
the C4.5 system, a landmark decision tree program that is probably the machine
learning workhorse most widely used in practice to date. Next we describe deci-
sion rule induction. Despite the simplicity of the idea, inducing decision rules
that perform comparably with state-of-the-art decision trees turns out to be
quite difficult in practice. Most high-performance rule inducers find an initial
rule set and then refine it using a rather complex optimization stage that dis-
cards or adjusts individual rules to make them work better together. We describe
the ideas that underlie rule learning in the presence of noise, and then go on to
cover a scheme that operates by forming partial decision trees, an approach
that has been demonstrated to perform as well as other state-of-the-art rule
learners yet avoids their complex and ad hoc heuristics. Following this, we take
a brief look at how to generate rules with exceptions, which were described in
Section 3.5.

There has been resurgence of interest in linear models with the introduction
of support vector machines, a blend of linear modeling and instance-based
learning. Support vector machines select a small number of critical boundary
instances called support vectors from each class and build a linear discriminant
function that separates them as widely as possible. These systems transcend
the limitations of linear boundaries by making it practical to include extra
nonlinear terms in the function, making it possible to form quadratic, cubic,
and higher-order decision boundaries. The same techniques can be applied to
the perceptron described in Section 4.6 to implement complex decision bound-
aries. An older technique for extending the perceptron is to connect units
together into multilayer “neural networks.” All these ideas are described in
Section 6.3.

The next section of the chapter describes instance-based learners, develop-
ing the simple nearest-neighbor method introduced in Section 4.7 and showing
some more powerful alternatives that perform explicit generalization. Follow-
ing that, we extend linear regression for numeric prediction to a more sophis-
ticated procedure that comes up with the tree representation introduced in
Section 3.7 and go on to describe locally weighted regression, an instance-based
strategy for numeric prediction. Next we return to clustering and review some
methods that are more sophisticated than simple k-means, methods that
produce hierarchical clusters and probabilistic clusters. Finally, we look at
Bayesian networks, a potentially very powerful way of extending the Naive Bayes
method to make it less “naive” by dealing with datasets that have internal
dependencies.



6.1

6.1  DECISION TREES 189

Because of the nature of the material it contains, this chapter differs from the
others in the book. Sections can be read independently, and each section is self-
contained, including the references to further reading, which are gathered
together in a Discussion subsection at the end of each section.

Decision trees

The first machine learning scheme that we will develop in detail derives from
the simple divide-and-conquer algorithm for producing decision trees that was
described in Section 4.3. It needs to be extended in several ways before it is ready
for use on real-world problems. First we consider how to deal with numeric
attributes and, after that, missing values. Then we look at the all-important
problem of pruning decision trees, because although trees constructed by the
divide-and-conquer algorithm as described perform well on the training set,
they are usually overfitted to the training data and do not generalize well to
independent test sets. Next we consider how to convert decision trees to classi-
fication rules. In all these aspects we are guided by the popular decision tree
algorithm C4.5, which, with its commercial successor C5.0, has emerged as the
industry workhorse for off-the-shelf machine learning. Finally, we look at the
options provided by C4.5 and C5.0 themselves.

Numeric attributes

The method we have described only works when all the attributes are nominal,
whereas, as we have seen, most real datasets contain some numeric attributes.
It is not too difficult to extend the algorithm to deal with these. For a numeric
attribute we will restrict the possibilities to a two-way, or binary, split. Suppose
we use the version of the weather data that has some numeric features (Table
1.3). Then, when temperature is being considered for the first split, the tem-
perature values involved are

64 65 68 69 70 71 72 75 80 81 83 85
no yes
yes no yes yes vyes no no vyes yes no
yes yes
(Repeated values have been collapsed together.) There are only 11 possible posi-
tions for the breakpoint—S8 if the breakpoint is not allowed to separate items
of the same class. The information gain for each can be calculated in the usual
way. For example, the test temperature < 71.5 produces four yes’s and two no’s,
whereas temperature > 71.5 produces five yes’s and three no’s, and so the infor-
mation value of this test is

info([4,2],[5,3]) = (6/14) x info([4,2]) +(8/14) x info([5,3]) = 0.939 bits.



190

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

It is common to place numeric thresholds halfway between the values that
delimit the boundaries of a concept, although something might be gained by
adopting a more sophisticated policy. For example, we will see later that
although the simplest form of instance-based learning puts the dividing line
between concepts in the middle of the space between them, other methods that
involve more than just the two nearest examples have been suggested.

When creating decision trees using the divide-and-conquer method, once the
first attribute to split on has been selected, a top-level tree node is created that
splits on that attribute, and the algorithm proceeds recursively on each of the
child nodes. For each numeric attribute, it appears that the subset of instances
at each child node must be re-sorted according to that attribute’s values—and,
indeed, this is how programs for inducing decision trees are usually written.
However, it is not actually necessary to re-sort because the sort order at a parent
node can be used to derive the sort order for each child, leading to a speedier
implementation. Consider the temperature attribute in the weather data, whose
sort order (this time including duplicates) is

64 65 68 69 70 71 72 72 75 75 80 81 83 85
7 6 5 9 4 14 8 12 10 11 2 13 3 1

The italicized number below each temperature value gives the number of the
instance that has that value: thus instance number 7 has temperature value 64,
instance 6 has temperature value 65, and so on. Suppose we decide to split at
the top level on the attribute outlook. Consider the child node for which
outlook = sunny—in fact the examples with this value of outlook are numbers 1,
2, 8,9, and 11. If the italicized sequence is stored with the example set (and a
different sequence must be stored for each numeric attribute)—that is, instance
7 contains a pointer to instance 6, instance 6 points to instance 5, instance 5
points to instance 9, and so on—then it is a simple matter to read off the exam-
ples for which outlook = sunny in order. All that is necessary is to scan through
the instances in the indicated order, checking the outlook attribute for each and
writing down the ones with the appropriate value:

9 8 11 2 1

Thus repeated sorting can be avoided by storing with each subset of instances
the sort order for that subset according to each numeric attribute. The sort order
must be determined for each numeric attribute at the beginning; no further
sorting is necessary thereafter.

When a decision tree tests a nominal attribute as described in Section 4.3, a
branch is made for each possible value of the attribute. However, we have
restricted splits on numeric attributes to be binary. This creates an important
difference between numeric attributes and nominal ones: once you have
branched on a nominal attribute, you have used all the information that it offers,



6.1  DECISION TREES 191

whereas successive splits on a numeric attribute may continue to yield new
information. Whereas a nominal attribute can only be tested once on any path
from the root of a tree to the leaf, a numeric one can be tested many times. This
can yield trees that are messy and difficult to understand because the tests on
any single numeric attribute are not located together but can be scattered along
the path. An alternative, which is harder to accomplish but produces a more
readable tree, is to allow a multiway test on a numeric attribute, testing against
several constants at a single node of the tree. A simpler but less powerful solu-
tion is to prediscretize the attribute as described in Section 7.2.

Missing values

The next enhancement to the decision-tree-building algorithm deals with the
problems of missing values. Missing values are endemic in real-world datasets.
As explained in Chapter 2 (page 58), one way of handling them is to treat them
as just another possible value of the attribute; this is appropriate if the fact that
the attribute is missing is significant in some way. In that case no further action
need be taken. But if there is no particular significance in the fact that a certain
instance has a missing attribute value, a more subtle solution is needed. It is
tempting to simply ignore all instances in which some of the values are missing,
but this solution is often too draconian to be viable. Instances with missing
values often provide a good deal of information. Sometimes the attributes
whose values are missing play no part in the decision, in which case these
instances are as good as any other.

One question is how to apply a given decision tree to an instance in which
some of the attributes to be tested have missing values. We outlined a solution
in Section 3.2 that involves notionally splitting the instance into pieces, using a
numeric weighting method, and sending part of it down each branch in pro-
portion to the number of training instances going down that branch. Eventu-
ally, the various parts of the instance will each reach a leaf node, and the
decisions at these leaf nodes must be recombined using the weights that have
percolated to the leaves. The information gain and gain ratio calculations
described in Section 4.3 can also be applied to partial instances. Instead of
having integer counts, the weights are used when computing both gain figures.

Another question is how to partition the training set once a splitting attrib-
ute has been chosen, to allow recursive application of the decision tree forma-
tion procedure on each of the daughter nodes. The same weighting procedure
is used. Instances for which the relevant attribute value is missing are notion-
ally split into pieces, one piece for each branch, in the same proportion as the
known instances go down the various branches. Pieces of the instance con-
tribute to decisions at lower nodes in the usual way through the information
gain calculation, except that they are weighted accordingly. They may be further



192

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

split at lower nodes, of course, if the values of other attributes are unknown as
well.

Pruning

When we looked at the labor negotiations problem in Chapter 1, we found that
the simple decision tree in Figure 1.3(a) actually performs better than the more
complex one in Figure 1.3(b)—and it makes more sense too. Now it is time to
learn how to prune decision trees.

By building the complete tree and pruning it afterward we are adopting a
strategy of postpruning (sometimes called backward pruning) rather than
prepruning (or forward pruning). Prepruning would involve trying to decide
during the tree-building process when to stop developing subtrees—quite an
attractive prospect because that would avoid all the work of developing subtrees
only to throw them away afterward. However, postpruning does seem to offer
some advantages. For example, situations occur in which two attributes indi-
vidually seem to have nothing to contribute but are powerful predictors when
combined—a sort of combination-lock effect in which the correct combination
of the two attribute values is very informative whereas the attributes taken indi-
vidually are not. Most decision tree builders postprune; it is an open question
whether prepruning strategies can be developed that perform as well.

Two rather different operations have been considered for postpruning:
subtree replacement and subtree raising. At each node, a learning scheme might
decide whether it should perform subtree replacement, subtree raising, or leave
the subtree as it is, unpruned. Subtree replacement is the primary pruning oper-
ation, and we look at it first. The idea is to select some subtrees and replace them
with single leaves. For example, the whole subtree in Figure 1.3(a), involving
two internal nodes and four leaf nodes, has been replaced by the single leaf bad.
This will certainly cause the accuracy on the training set to decrease if the orig-
inal tree was produced by the decision tree algorithm described previously
because that continued to build the tree until all leaf nodes were pure (or until
all attributes had been tested). However, it may increase the accuracy on an inde-
pendently chosen test set.

When subtree replacement is implemented, it proceeds from the leaves and
works back up toward the root. In the Figure 1.3 example, the whole subtree in
Figure 1.3(a) would not be replaced at once. First, consideration would be given
to replacing the three daughter nodes in the health plan contribution subtree
with a single leaf node. Assume that a decision is made to perform this replace-
ment—we will explain how this decision is made shortly. Then, continuing to
work back from the leaves, consideration would be given to replacing the
working hours per week subtree, which now has just two daughter nodes, with a
single leaf node. In the Figure 1.3 example this replacement was indeed made,



6.1  DECISION TREES 193

which accounts for the entire subtree in Figure 1.3(a) being replaced by a single
leaf marked bad. Finally, consideration would be given to replacing the
two daughter nodes in the wage increase Ist year subtree with a single leaf
node. In this case that decision was not made, so the tree remains as shown in
Figure 1.3(a). Again, we will examine how these decisions are actually made
shortly.

The second pruning operation, subtree raising, is more complex, and it is not
clear that it is necessarily always worthwhile. However, because it is used in the
influential decision tree-building system C4.5, we describe it here. Subtree
raising does not occur in the Figure 1.3 example, so use the artificial example
of Figure 6.1 for illustration. Here, consideration is given to pruning the tree in
Figure 6.1(a), and the result is shown in Figure 6.1(b). The entire subtree from
C downward has been “raised” to replace the B subtree. Note that although the
daughters of B and C are shown as leaves, they can be entire subtrees. Of course,
if we perform this raising operation, it is necessary to reclassify the examples at
the nodes marked 4 and 5 into the new subtree headed by C. This is why the
daughters of that node are marked with primes: 1’, 2, and 3’—to indicate that
they are not the same as the original daughters 1, 2, and 3 but differ by the inclu-
sion of the examples originally covered by 4 and 5.

Subtree raising is a potentially time-consuming operation. In actual imple-
mentations it is generally restricted to raising the subtree of the most popular
branch. That is, we consider doing the raising illustrated in Figure 6.1 provided
that the branch from B to C has more training examples than the branches from
B to node 4 or from B to node 5. Otherwise, if (for example) node 4 were the
majority daughter of B, we would consider raising node 4 to replace B and
reclassifying all examples under C, as well as the examples from node 5, into the
new node.

Estimating error rates

So much for the two pruning operations. Now we must address the question of
how to decide whether to replace an internal node with a leaf (for subtree
replacement), or whether to replace an internal node with one of the nodes
below it (for subtree raising). To make this decision rationally, it is necessary to
estimate the error rate that would be expected at a particular node given an
independently chosen test set. We need to estimate the error at internal nodes
as well as at leaf nodes. If we had such an estimate, it would be clear whether
to replace, or raise, a particular subtree simply by comparing the estimated error
of the subtree with that of its proposed replacement. Before estimating the error
for a subtree proposed for raising, examples that lie under siblings of the current
node—the examples at nodes 4 and 5 of Figure 6.1—would have to be tem-
porarily reclassified into the raised tree.



194

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

Iy 2’ 3

(a

Figure 6.1 Example of subtree raising, where node C is “raised” to subsume node B.

It is no use taking the training set error as the error estimate: that would not
lead to any pruning because the tree has been constructed expressly for that par-
ticular training set. One way of coming up with an error estimate is the stan-
dard verification technique: hold back some of the data originally given and use
it as an independent test set to estimate the error at each node. This is called
reduced-error pruning. It suffers from the disadvantage that the actual tree is
based on less data.

The alternative is to try to make some estimate of error based on the train-
ing data itself. That is what C4.5 does, and we will describe its method here. It
is a heuristic based on some statistical reasoning, but the statistical underpin-
ning is rather weak and ad hoc. However, it seems to work well in practice. The
idea is to consider the set of instances that reach each node and imagine that
the majority class is chosen to represent that node. That gives a certain number
of “errors,” E, out of the total number of instances, N. Now imagine that the
true probability of error at the node is g, and that the N instances are generated
by a Bernoulli process with parameter g, of which E turn out to be errors.

This is almost the same situation as we considered when looking at the
holdout method in Section 5.2, where we calculated confidence intervals on
the true success probability p given a certain observed success rate. There are
two differences. One is trivial: here we are looking at the error rate q rather
than the success rate p; these are simply related by p + q = 1. The second is
more serious: here the figures E and N are measured from the training data,
whereas in Section 5.2 we were considering independent test data instead.
Because of this difference, we make a pessimistic estimate of the error rate by
using the upper confidence limit rather than by stating the estimate as a confi-
dence range.



6.1  DECISION TREES 195

The mathematics involved is just the same as before. Given a particular con-
fidence ¢ (the default figure used by C4.5 is ¢ = 25%), we find confidence limits
z such that

f-q }
Pr[— >z|=c,
Ja(1-¢)/N
where N is the number of samples, f= E/N is the observed error rate, and q is
the true error rate. As before, this leads to an upper confidence limit for g. Now

we use that upper confidence limit as a (pessimistic) estimate for the error rate
e at the node:

2 2 2
2N VN N 4N
ZZ

1+%

N

e =

Note the use of the + sign before the square root in the numerator to obtain the
upper confidence limit. Here, z is the number of standard deviations corre-
sponding to the confidence ¢, which for ¢ = 25% is z = 0.69.

To see how all this works in practice, let’s look again at the labor negotiations
decision tree of Figure 1.3, salient parts of which are reproduced in Figure 6.2
with the number of training examples that reach the leaves added. We use the
preceding formula with a 25% confidence figure, that is, with z= 0.69. Consider
the lower left leaf, for which E=2, N =6, and so f = 0.33. Plugging these figures
into the formula, the upper confidence limit is calculated as e = 0.47. That means
that instead of using the training set error rate for this leaf, which is 33%, we
will use the pessimistic estimate of 47%. This is pessimistic indeed, considering
that it would be a bad mistake to let the error rate exceed 50% for a two-class
problem. But things are worse for the neighboring leaf, where E=1 and N = 2,
because the upper confidence becomes e = 0.72. The third leaf has the
same value of e as the first. The next step is to combine the error estimates for
these three leaves in the ratio of the number of examples they cover, 6: 2 : 6,
which leads to a combined error estimate of 0.51. Now we consider the error
estimate for the parent node, health plan contribution. This covers nine bad
examples and five good ones, so the training set error rate is f = 5/14. For these
values, the preceding formula yields a pessimistic error estimate of e = 0.46.
Because this is less than the combined error estimate of the three children, they
are pruned away.

The next step is to consider the working hours per week node, which now has
two children that are both leaves. The error estimate for the first, with E=1 and
N =2,is e =0.72, and for the second it is e = 0.46 as we have just seen. Com-
bining these in the appropriate ratio of 2 : 14 leads to a value that is higher than



]gﬁ CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

wage increase first year

working hours
per week

1 bad

1 good contribution

4 bad 1 bad 4 bad
2 good 1 good 2 good

Figure 6.2 Pruning the labor negotiations decision tree.

the error estimate for the working hours node, so the subtree is pruned away and
replaced by a leaf node.

The estimated error figures obtained in these examples should be taken with
a grain of salt because the estimate is only a heuristic one and is based on a
number of shaky assumptions: the use of the upper confidence limit; the
assumption of a normal distribution; and the fact that statistics from the train-
ing set are used. However, the qualitative behavior of the error formula is correct
and the method seems to work reasonably well in practice. If necessary, the
underlying confidence level, which we have taken to be 25%, can be tweaked to
produce more satisfactory results.

Complexity of decision tree induction

Now that we have learned how to accomplish the pruning operations, we have
finally covered all the central aspects of decision tree induction. Let’s take stock
and consider the computational complexity of inducing decision trees. We will
use the standard order notation: O(#n) stands for a quantity that grows at most
linearly with n, O(n*) grows at most quadratically with #, and so on.

Suppose that the training data contains 7 instances and m attributes. We need
to make some assumption about the size of the tree, and we will assume that its
depth is on the order of log n, that is, O(log n). This is the standard rate of
growth of a tree with n leaves, provided that it remains “bushy” and doesn’t
degenerate into a few very long, stringy branches. Note that we are tacitly assum-



6.1  DECISION TREES 197

ing that most of the instances are different from each other, and—this is almost
the same thing—that the m attributes provide enough tests to allow the
instances to be differentiated. For example, if there were only a few binary attri-
butes, they would allow only so many instances to be differentiated and the
tree could not grow past a certain point, rendering an “in the limit” analysis
meaning]ess.

The computational cost of building the tree in the first place is

O(mnlogn).

Consider the amount of work done for one attribute over all nodes of the tree.
Not all the examples need to be considered at each node, of course. But at each
possible tree depth, the entire set of n instances must be considered. Because
there are log n different depths in the tree, the amount of work for this one
attribute is O(n log n). At each node all attributes are considered, so the total
amount of work is O(mn log n).

This reasoning makes some assumptions. If some attributes are numeric, they
must be sorted, but once the initial sort has been done there is no need to re-
sort at each tree depth if the appropriate algorithm is used (described earlier on
page 190). The initial sort takes O(n log ) operations for each of up to m attrib-
utes: thus the preceding complexity figure is unchanged. If the attributes are
nominal, all attributes do not have to be considered at each tree node—because
attributes that are used further up the tree cannot be reused. However, if attrib-
utes are numeric, they can be reused and so they have to be considered at every
tree level.

Next, consider pruning by subtree replacement. First, an error estimate
must be made for every tree node. Provided that counts are maintained
appropriately, this is linear in the number of nodes in the tree. Then each
node needs to be considered for replacement. The tree has at most # leaves, one
for each instance. If it was a binary tree, each attribute being numeric or
two-valued, that would give it 21 — 1 nodes; multiway branches would only serve
to decrease the number of internal nodes. Thus the complexity of subtree
replacement is

O(n).

Finally, subtree lifting has a basic complexity equal to subtree replacement.
But there is an added cost because instances need to be reclassified during the
lifting operation. During the whole process, each instance may have to be reclas-
sified at every node between its leaf and the root, that is, as many as O(log n)
times. That makes the total number of reclassifications O(n log n). And reclas-
sification is not a single operation: one that occurs near the root will take O(log
n) operations, and one of average depth will take half of this. Thus the total
complexity of subtree lifting is as follows:



198

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

O(n(log n)z)

Taking into account all these operations, the full complexity of decision tree
induction is

O(mnlogn)+ O(n(log n)’ )

From trees to rules

It is possible to read a set of rules directly off a decision tree, as noted in Section
3.3, by generating a rule for each leaf and making a conjunction of all the tests
encountered on the path from the root to that leaf. This produces rules that are
unambiguous in that it doesn’t matter in what order they are executed. However,
the rules are more complex than necessary.

The estimated error rate described previously provides exactly the mecha-
nism necessary to prune the rules. Given a particular rule, each condition in it
is considered for deletion by tentatively removing it, working out which of the
training examples are now covered by the rule, calculating from this a pes-
simistic estimate of the error rate of the new rule, and comparing this with the
pessimistic estimate for the original rule. If the new rule is better, delete that
condition and carry on, looking for other conditions to delete. Leave the rule
when there are no conditions left that will improve it if they are removed. Once
all rules have been pruned in this way, it is necessary to see whether there are
any duplicates and remove them from the rule set.

This is a greedy approach to detecting redundant conditions in a rule, and
there is no guarantee that the best set of conditions will be removed. An
improvement would be to consider all subsets of conditions, but this is usually
prohibitively expensive. Another solution might be to use an optimization tech-
nique such as simulated annealing or a genetic algorithm to select the best
version of this rule. However, the simple greedy solution seems to produce quite
good rule sets.

The problem, even with the greedy method, is computational cost. For every
condition that is a candidate for deletion, the effect of the rule must be reeval-
uated on all the training instances. This means that rule generation from trees
tends to be very slow, and the next section describes much faster methods that
generate classification rules directly without forming a decision tree first.

C4.5: Choices and options

We finish our study of decision trees by making a few remarks about practical
use of the landmark decision tree program C4.5 and its successor C5.0. These
were devised by J. Ross Quinlan over a 20-year period beginning in the late
1970s. A complete description of C4.5, the early 1990s version, appears as an
excellent and readable book (Quinlan 1993), along with the full source code.



6.1  DECISION TREES 199

The more recent version, C5.0, is available commercially. Its decision tree induc-
tion seems to be essentially the same as that used by C4.5, and tests show some
differences but negligible improvements. However, its rule generation is greatly
sped up and clearly uses a different technique, although this has not been
described in the open literature.

C4.5 works essentially as described in the preceding sections. The default con-
fidence value is set at 25% and works reasonably well in most cases; possibly it
should be altered to a lower value, which causes more drastic pruning, if the
actual error rate of pruned trees on test sets is found to be much higher than
the estimated error rate. There is one other important parameter whose effect
is to eliminate tests for which almost all of the training examples have the same
outcome. Such tests are often of little use. Consequently, tests are not incorpo-
rated into the decision tree unless they have at least two outcomes that have at
least a minimum number of instances. The default value for this minimum is
2, but it is controllable and should perhaps be increased for tasks that have a lot
of noisy data.

Discussion

Top-down induction of decision trees is probably the most extensively
researched method of machine learning used in data mining. Researchers have
investigated a panoply of variations for almost every conceivable aspect of the
learning process—for example, different criteria for attribute selection or
modified pruning methods. However, they are rarely rewarded by substantial
improvements in accuracy over a spectrum of diverse datasets. Sometimes the
size of the induced trees is significantly reduced when a different pruning strat-
egy is adopted, but often the same effect can be achieved by setting C4.5s
pruning parameter to a smaller value.

In our description of decision trees, we have assumed that only one
attribute is used to split the data into subsets at each node of the tree.
However, it is possible to allow tests that involve several attributes at a time.
For example, with numeric attributes each test can be on a linear combination
of attribute values. Then the final tree consists of a hierarchy of linear models
of the kind we described in Section 4.6, and the splits are no longer restricted
to being axis-parallel. Trees with tests involving more than one attribute are
called multivariate decision trees, in contrast to the simple univariate trees
that we normally use. Multivariate tests were introduced with the classification
and regression trees (CART) system for learning decision trees (Breiman et al.
1984). They are often more accurate and smaller than univariate trees but take
much longer to generate and are also more difficult to interpret. We briefly
mention one way of generating them using principal components analysis in
Section 7.3 (page 309).



200

6.2

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

Classification rules

We call the basic covering algorithm for generating rules that was described in
Section 4.4 a separate-and-conquer technique because it identifies a rule that
covers instances in the class (and excludes ones not in the class), separates them
out, and continues on those that are left. Such algorithms have been used as the
basis of many systems that generate rules. There we described a simple correct-
ness-based measure for choosing what test to add to the rule at each stage.
However, there are many other possibilities, and the particular criterion that
is used has a significant effect on the rules produced. We examine different
criteria for choosing tests in this section. We also look at how the basic rule-
generation algorithm can be extended to more practical situations by accom-
modating missing values and numeric attributes.

But the real problem with all these rule-generation schemes is that they tend
to overfit the training data and do not generalize well to independent test sets,
particularly on noisy data. To be able to generate good rule sets for noisy data,
it is necessary to have some way of measuring the real worth of individual rules.
The standard approach to assessing the worth of rules is to evaluate their error
rate on an independent set of instances, held back from the training set, and we
explain this next. After that, we describe two industrial-strength rule learners:
one that combines the simple separate-and-conquer technique with a global
optimization step and another one that works by repeatedly building partial
decision trees and extracting rules from them. Finally, we consider how to gen-
erate rules with exceptions, and exceptions to the exceptions.

Criteria for choosing tests

When we introduced the basic rule learner in Section 4.4, we had to figure out
a way of deciding which of many possible tests to add to a rule to prevent it
from covering any negative examples. For this we used the test that maximizes
the ratio

p/t

where t is the total number of instances that the new rule will cover, and p is
the number of these that are positive—that is, that belong to the class in ques-
tion. This attempts to maximize the “correctness” of the rule on the basis that
the higher the proportion of positive examples it covers, the more correct a rule
is. One alternative is to calculate an information gain:

p P}

log=—log— |,
P[ g ; gT

where p and f are the number of positive instances and the total number of

instances covered by the new rule, as before, and P and T are the corresponding



6.2  CLASSIFICATION RULES 201

number of instances that satisfied the rule before the new test was added. The
rationale for this is that it represents the total information gained regarding
the current positive examples, which is given by the number of them that satisfy
the new test, multiplied by the information gained regarding each one.

The basic criterion for choosing a test to add to a rule is to find one that
covers as many positive examples as possible, while covering as few negative
examples as possible. The original correctness-based heuristic, which is just the
percentage of positive examples among all examples covered by the rule, attains
a maximum when no negative examples are covered regardless of the number
of positive examples covered by the rule. Thus a test that makes the rule exact
will be preferred to one that makes it inexact, no matter how few positive exam-
ples the former rule covers or how many positive examples the latter covers. For
example, if we can choose between a test that covers one example, which is pos-
itive, this criterion will prefer it over a test that covers 1000 positive examples
along with one negative one.

The information-based heuristic, on the other hand, places far more empha-
sis on covering a large number of positive examples regardless of whether the
rule so created is exact. Of course, both algorithms continue adding tests until
the final rule produced is exact, which means that the rule will be finished earlier
using the correctness measure, whereas more terms will have to be added if the
information-based measure is used. Thus the correctness-based measure might
find special cases and eliminate them completely, saving the larger picture for
later (when the more general rule might be simpler because awkward special
cases have already been dealt with), whereas the information-based one will try
to generate high-coverage rules first and leave the special cases until later. It is
by no means obvious that either strategy is superior to the other at producing
an exact rule set. Moreover, the whole situation is complicated by the fact that,
as described later, rules may be pruned and inexact ones tolerated.

Missing values, numeric attributes

As with divide-and-conquer decision tree algorithms, the nasty practical con-
siderations of missing values and numeric attributes need to be addressed. In
fact, there is not much more to say. Now that we know how these problems can
be solved for decision tree induction, appropriate solutions for rule induction
are easily given.

When producing rules using covering algorithms, missing values can best be
treated as though they don’t match any of the tests. This is particularly suitable
when a decision list is being produced because it encourages the learning algo-
rithm to separate out positive instances using tests that are known to succeed.
It has the effect that either instances with missing values are dealt with by rules
involving other attributes that are not missing, or any decisions about them are



202

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

deferred until most of the other instances have been taken care of, at which time
tests will probably emerge that involve other attributes. Covering algorithms for
decision lists have a decided advantage over decision tree algorithms in this
respect: tricky examples can be left until late in the process, at which time they
will appear less tricky because most of the other examples have already been
classified and removed from the instance set.

Numeric attributes can be dealt with in exactly the same way as they are for
trees. For each numeric attribute, instances are sorted according to the
attribute’s value and, for each possible threshold, a binary less-than/greater-than
test is considered and evaluated in exactly the same way that a binary attribute
would be.

Generating good rules

Suppose you don’t want to generate perfect rules that guarantee to give the
correct classification on all instances in the training set, but would rather gen-
erate “sensible” ones that avoid overfitting the training set and thereby stand a
better chance of performing well on new test instances. How do you decide
which rules are worthwhile? How do you tell when it becomes counterproduc-
tive to continue adding terms to a rule to exclude a few pesky instances of the
wrong type, all the while excluding more and more instances of the right type,
too?

Let’s look at a few examples of possible rules—some good and some bad—
for the contact lens problem in Table 1.1. Consider first the rule

If astigmatism = yes and tear production rate = normal
then recommendation = hard

This gives a correct result for four of the six cases that it covers; thus its
success fraction is 4/6. Suppose we add a further term to make the rule a
“perfect” one:

If astigmatism = yes and tear production rate = normal
and age = young then recommendation = hard

This improves accuracy to 2/2. Which rule is better? The second one is more
accurate on the training data but covers only two cases, whereas the first one
covers six. [t may be that the second version is just overfitting the training data.
For a practical rule learner we need a principled way of choosing the appropri-
ate version of a rule, preferably one that maximizes accuracy on future test data.

Suppose we split the training data into two parts that we will call a growing
set and a pruning set. The growing set is used to form a rule using the basic cov-
ering algorithm. Then a test is deleted from the rule, and the effect is evaluated
by trying out the truncated rule on the pruning set and seeing whether it



6.2  CLASSIFICATION RULES 203

performs better than the original rule. This pruning process repeats until the
rule cannot be improved by deleting any further tests. The whole procedure is
repeated for each class, obtaining one best rule for each class, and the overall
best rule is established by evaluating the rules on the pruning set. This rule is
then added to the rule set, the instances it covers removed from the training
data—from both growing and pruning sets—and the process is repeated.

Why not do the pruning as we build the rule up, rather than building up the
whole thing and then throwing parts away? That is, why not preprune rather
than postprune? Just as when pruning decision trees it is often best to grow the
tree to its maximum size and then prune back, so with rules it is often best to
make a perfect rule and then prune it. Who knows? Adding that last term may
make a really good rule, a situation that we might never have noticed had we
adopted an aggressive prepruning strategy.

It is essential that the growing and pruning sets are separate, because it is mis-
leading to evaluate a rule on the very data used to form it: that would lead to
serious errors by preferring rules that were overfitted. Usually the training set is
split so that two-thirds of instances are used for growing and one-third for
pruning. A disadvantage, of course, is that learning occurs from instances in the
growing set only, and so the algorithm might miss important rules because some
key instances had been assigned to the pruning set. Moreover, the wrong rule
might be preferred because the pruning set contains only one-third of the data
and may not be completely representative. These effects can be ameliorated by
resplitting the training data into growing and pruning sets at each cycle of the
algorithm, that is, after each rule is finally chosen.

The idea of using a separate pruning set for pruning—which is applicable to
decision trees as well as rule sets—is called reduced-error pruning. The variant
described previously prunes a rule immediately after it has been grown and is
called incremental reduced-error pruning. Another possibility is to build a full,
unpruned rule set first, pruning it afterwards by discarding individual tests.
However, this method is much slower.

Of course, there are many different ways to assess the worth of a rule based
on the pruning set. A simple measure is to consider how well the rule would do
at discriminating the predicted class from other classes if it were the only rule
in the theory, operating under the closed world assumption. If it gets p instances
right out of the ¢ instances that it covers, and there are P instances of this class
out of a total T of instances altogether, then it gets p positive instances right.
The instances that it does not cover include N — n negative ones, where n=1t—p
is the number of negative instances that the rule covers and N = T — P is the
total number of negative instances. Thus the rule has an overall success ratio of

[p+(N-n)]/T,



204

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

and this quantity, evaluated on the test set, has been used to evaluate the success
of a rule when using reduced-error pruning.

This measure is open to criticism because it treats noncoverage of negative
examples as equally important as coverage of positive ones, which is unrealistic
in a situation where what is being evaluated is one rule that will eventually serve
alongside many others. For example, a rule that gets p = 2000 instances right
out of a total coverage of 3000 (i.e., it gets n = 1000 wrong) is judged as more
successful than one that gets p = 1000 out of a total coverage of 1001 (i.e.,
n =1 wrong), because [p + (N —n)]/T is [1000 + N]/T in the first case but only
[999 + N]/T in the second. This is counterintuitive: the first rule is clearly less
predictive than the second, because it has 33.0% as opposed to only 0.1%
chance of being incorrect.

Using the success rate p/t as a measure, as in the original formulation of the
covering algorithm (Figure 4.8), is not the perfect solution either, because it
would prefer a rule that got a single instance right (p = 1) out of a total cover-
age of 1 (so n =0) to the far more useful rule that got 1000 right out of 1001.
Another heuristic that has been used is (p — n)/t, but that suffers from exactly
the same problem because (p — n)/t = 2p/t — 1 and so the result, when compar-
ing one rule with another, is just the same as with the success rate. It seems hard
to find a simple measure of the worth of a rule that corresponds with intuition
in all cases.

Whatever heuristic is used to measure the worth of a rule, the incremental
reduced-error pruning algorithm is the same. A possible rule learning algorithm
based on this idea is given in Figure 6.3. It generates a decision list, creating rules
for each class in turn and choosing at each stage the best version of the rule
according to its worth on the pruning data. The basic covering algorithm for
rule generation (Figure 4.8) is used to come up with good rules for each class,
choosing conditions to add to the rule using the accuracy measure p/t that we
described earlier.

This method has been used to produce rule-induction schemes that can
process vast amounts of data and operate very quickly. It can be accelerated by
generating rules for the classes in order rather than generating a rule for each
class at every stage and choosing the best. A suitable ordering is the increasing
order in which they occur in the training set so that the rarest class is processed
first and the most common ones are processed later. Another significant
speedup is obtained by stopping the whole process when a rule of sufficiently
low accuracy is generated, so as not to spend time generating a lot of rules at
the end with very small coverage. However, very simple terminating conditions
(such as stopping when the accuracy for a rule is lower than the default accu-
racy for the class it predicts) do not give the best performance, and the only
conditions that have been found that seem to perform well are rather compli-
cated ones based on the MDL principle.



6.2  CLASSIFICATION RULES 205

Initialize E to the instance set
Split E into Grow and Prune in the ratio 2:1
For each class C for which Grow and Prune both contain an instance
Use the basic covering algorithm to create the best perfect rule for class C
Calculate the worth w(R) for the rule on Prune, and of the rule with the
final condition omitted w(R-)
While w(R-) > w(R), remove the final condition from the rule and repeat the
previous step
From the rules generated, select the one with the largest w(R)
Print the rule
Remove the instances covered by the rule from E

Continue

Figure 6.3 Algorithm for forming rules by incremental reduced-error pruning.

Using global optimization

In general, rules generated using incremental reduced-error pruning in this
manner seem to perform quite well, particularly on large datasets. However, it
has been found that a worthwhile performance advantage can be obtained by
performing a global optimization step on the set of rules induced. The motiva-
tion is to increase the accuracy of the rule set by revising or replacing individ-
ual rules. Experiments show that both the size and the performance of rule sets
are significantly improved by postinduction optimization. On the other hand,
the process itself is rather complex.

To give an idea of how elaborate—and heuristic—industrial-strength rule
learners become, Figure 6.4 shows an algorithm called RIPPER, an acronym for
repeated incremental pruning to produce error reduction. Classes are examined in
increasing size and an initial set of rules for the class is generated using incre-
mental reduced-error pruning. An extra stopping condition is introduced that
depends on the description length of the examples and rule set. The description
length DL is a complex formula that takes into account the number of bits
needed to send a set of examples with respect to a set of rules, the number of
bits required to send a rule with k conditions, and the number of bits needed
to send the integer k—times an arbitrary factor of 50% to compensate for pos-
sible redundancy in the attributes. Having produced a rule set for the class, each
rule is reconsidered and two variants produced, again using reduced-error
pruning—but at this stage, instances covered by other rules for the class are
removed from the pruning set, and success rate on the remaining instances
is used as the pruning criterion. If one of the two variants yields a better



ZUE CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

Initialize E to the instance set
For each class C, from smallest to largest
BUILD:
Split E into Growing and Pruning sets in the ratio 2:1
Repeat until (a) there are no more uncovered examples of C; or (b) the
description length (DL) of ruleset and examples is 64 bits greater
than the smallest DL found so far, or (c) the error rate exceeds
50%:
GROW phase: Grow a rule by greedily adding conditions until the rule
is 100% accurate by testing every possible value of each attribute
and selecting the condition with greatest information gain G
PRUNE phase: Prune conditions in last-to-first order. Continue as long
as the worth W of the rule increases
OPTIMIZE:
GENERATE VARIANTS:
For each rule R for class C,
Split E afresh into Growing and Pruning sets
Remove all instances from the Pruning set that are covered by other
rules for C
Use GROW and PRUNE to generate and prune two competing rules from the
newly-split data:
Rl is a new rule, rebuilt from scratch;
R2 is generated by greedily adding antecedents to R.
Prune using the metric A (instead of W) on this reduced data
SELECT REPRESENTATIVE:
Replace R by whichever of R, Rl and R2 has the smallest DL.
MOP UP:
If there are residual uncovered instances of class C, return to the
BUILD stage to generate more rules based on these instances.
CLEAN UP:
Calculate DL for the whole ruleset and for the ruleset with each rule in
turn omitted; delete any rule that increases the DL
Remove instances covered by the rules just generated

Continue

(@
Figure 6.4 RIPPER: (a) algorithm for rule learning and (b) meaning of symbols.



6.2 CLASSIFICATION RULES

DL: see text
G=pllog(pin) — log(PIT)]
1
w= P*
t+2
p+n
A= T accuracy for this rule

p = number of positive examples covered by this rule (true positives)

n = number of negative examples covered by this rule (false negatives)

t = p + n; total number of examples covered by this rule

n’ = N —n; number of negative examples not covered by this rule (true negatives)
P = number of positive examples of this class

N = number of negative examples of this class

T = P + N, total number of examples of this class

(b)
Figure 6.4 (continued)

207

description length, it replaces the rule. Next we reactivate the original building
phase to mop up any newly uncovered instances of the class. A final check is
made to ensure that each rule contributes to the reduction of description length,
before proceeding to generate rules for the next class.

Obtaining rules from partial decision trees

There is an alternative approach to rule induction that avoids global optimiza-
tion but nevertheless produces accurate, compact, rule sets. The method com-
bines the divide-and-conquer strategy for decision tree learning with the
separate-and-conquer one for rule learning. It adopts the separate-and-conquer
strategy in that it builds a rule, removes the instances it covers, and continues
creating rules recursively for the remaining instances until none are left.
However, it differs from the standard approach in the way that each rule is
created. In essence, to make a single rule, a pruned decision tree is built for the
current set of instances, the leaf with the largest coverage is made into a rule,
and the tree is discarded.

The prospect of repeatedly building decision trees only to discard most of
them is not as bizarre as it first seems. Using a pruned tree to obtain a rule
instead of building it incrementally by adding conjunctions one at a time avoids
a tendency to overprune that is a characteristic problem of the basic separate-
and-conquer rule learner. Using the separate-and-conquer methodology in con-
junction with decision trees adds flexibility and speed. It is indeed wasteful to
build a full decision tree just to obtain a single rule, but the process can be accel-
erated significantly without sacrificing the preceding advantages.

The key idea is to build a partial decision tree instead of a fully explored one.
A partial decision tree is an ordinary decision tree that contains branches to



208

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

undefined subtrees. To generate such a tree, the construction and pruning oper-
ations are integrated in order to find a “stable” subtree that can be simplified no
further. Once this subtree has been found, tree building ceases and a single rule
is read off.

The tree-building algorithm is summarized in Figure 6.5: it splits a set of
instances recursively into a partial tree. The first step chooses a test and divides
the instances into subsets accordingly. The choice is made using the same infor-
mation-gain heuristic that is normally used for building decision trees (Section
4.3). Then the subsets are expanded in increasing order of their average entropy.
The reason for this is that the later subsets will most likely not end up being
expanded, and a subset with low average entropy is more likely to result in a
small subtree and therefore produce a more general rule. This proceeds recur-
sively until a subset is expanded into a leaf, and then continues further by back-
tracking. But as soon as an internal node appears that has all its children
expanded into leaves, the algorithm checks whether that node is better replaced
by a single leaf. This is just the standard subtree replacement operation of
decision tree pruning (Section 6.1). If replacement is performed the algorithm
backtracks in the standard way, exploring siblings of the newly replaced node.
However, if during backtracking a node is encountered all of whose children are
not leaves—and this will happen as soon as a potential subtree replacement is
not performed—then the remaining subsets are left unexplored and the corre-
sponding subtrees are left undefined. Because of the recursive structure of the
algorithm, this event automatically terminates tree generation.

Figure 6.6 shows a step-by-step example. During the stages in Figure 6.6(a)
through (c), tree building continues recursively in the normal way—except that

Expand-subset (S) :
Choose a test T and use it to split the set of examples into subsets
Sort subsets into increasing order of average entropy
while (there is a subset X that has not yet been expanded
AND all subsets expanded so far are leaves)

expand-subset (X)

if (all the subsets expanded are leaves
AND estimated error for subtree > estimated error for node)
undo expansion into subsets and make node a leaf

Figure 6.5 Algorithm for expanding examples into a partial tree.




6.2  CLASSIFICATION RULES 209

—
[«3]
=

0
e
c

@>ge

)
)

—
n
~

()
-0
9
)
)

(d)
Figure 6.6 Example of building a partial tree.

—

e)

at each point the lowest-entropy sibling is chosen for expansion: node 3
between stages (a) and (b). Gray elliptical nodes are as yet unexpanded; rec-
tangular ones are leaves. Between stages (b) and (c), the rectangular node will
have lower entropy than its sibling, node 5, but cannot be expanded further
because it is a leaf. Backtracking occurs and node 5 is chosen for expansion.
Once stage (c) is reached, there is a node—node 5—that has all of its children
expanded into leaves, and this triggers pruning. Subtree replacement for node
5 is considered and accepted, leading to stage (d). Then node 3 is considered for
subtree replacement, and this operation is again accepted. Backtracking con-
tinues, and node 4, having lower entropy than node 2, is expanded into two
leaves. Now subtree replacement is considered for node 4: suppose that node 4
is not replaced. At this point, the process terminates with the three-leaf partial
tree of stage (e).

If the data is noise-free and contains enough instances to prevent the algo-
rithm from doing any pruning, just one path of the full decision tree has to be
explored. This achieves the greatest possible performance gain over the naive



210

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

method that builds a full decision tree each time. The gain decreases as more
pruning takes place. For datasets with numeric attributes, the asymptotic time
complexity of the algorithm is the same as building the full decision tree,
because in this case the complexity is dominated by the time required to sort
the attribute values in the first place.

Once a partial tree has been built, a single rule is extracted from it. Each leaf
corresponds to a possible rule, and we seek the “best” leaf of those subtrees
(typically a small minority) that have been expanded into leaves. Experiments
show that it is best to aim at the most general rule by choosing the leaf that
covers the greatest number of instances.

When a dataset contains missing values, they can be dealt with exactly as they
are when building decision trees. If an instance cannot be assigned to any given
branch because of a missing attribute value, it is assigned to each of the branches
with a weight proportional to the number of training instances going down that
branch, normalized by the total number of training instances with known values
at the node. During testing, the same procedure is applied separately to each
rule, thus associating a weight with the application of each rule to the test
instance. That weight is deducted from the instance’s total weight before it is
passed to the next rule in the list. Once the weight has reduced to zero, the pre-
dicted class probabilities are combined into a final classification according to
the weights.

This yields a simple but surprisingly effective method for learning decision
lists for noisy data. Its main advantage over other comprehensive rule-
generation schemes is simplicity, because other methods require a complex
global optimization stage to achieve the same level of performance.

Rules with exceptions

In Section 3.5 we learned that a natural extension of rules is to allow them to
have exceptions, and exceptions to the exceptions, and so on—indeed the whole
rule set can be considered as exceptions to a default classification rule that is
used when no other rules apply. The method of generating a “good” rule, using
one of the measures described in the previous section, provides exactly the
mechanism needed to generate rules with exceptions.

First, a default class is selected for the top-level rule: it is natural to use the
class that occurs most frequently in the training data. Then, a rule is found per-
taining to any class other than the default one. Of all such rules it is natural to
seek the one with the most discriminatory power, for example, the one with the
best evaluation on a test set. Suppose this rule has the form

if <condition> then class = <new class>



6.2  CLASSIFICATION RULES 211

It is used to split the training data into two subsets: one containing all instances
for which the rule’s condition is true and the other containing those for which
it is false. If either subset contains instances of more than one class, the algo-
rithm is invoked recursively on that subset. For the subset for which the condi-
tion is true, the “default class” is the new class as specified by the rule;
for the subset for which the condition is false, the default class remains as it was
before.

Let’s examine how this algorithm would work for the rules with exceptions
given in Section 3.5 for the Iris data of Table 1.4. We will represent the rules in
the graphical form shown in Figure 6.7, which is in fact equivalent to the textual
rules we gave in Figure 3.5. The default of Iris setosa is the entry node at the top
left. Horizontal, dotted paths show exceptions, so the next box, which contains
a rule that concludes Iris versicolor, is an exception to the default. Below this is
an alternative, a second exception—alternatives are shown by vertical, solid
lines—leading to the conclusion Iris virginica. Following the upper path along
horizontally leads to an exception to the Iris versicolor rule that overrides it
whenever the condition in the top right box holds, with the conclusion Iris vir-
ginica. Below this is an alternative, leading (as it happens) to the same conclu-
sion. Returning to the box at bottom center, this has its own exception, the lower
right box, which gives the conclusion Iris versicolor. The numbers at the lower
right of each box give the “coverage” of the rule, expressed as the number of

petal length > 2.45

petal length > 4.95

} petal width < 1.75 .
-—> /r15550e/t10§8 ______________ »| petal length < 5.35 | .| petal Wld;[h < ‘1.5_5_
--> Iris versicolor > 1S ngz'jg
49/52

Y

sepal length < 4.95
sepal width > 2.45
--> Iris virginica
11

Exceptions are
represented as
dotted paths,
alternatives as
solid ones.

Y
petal length < 4.85
petal length > 3.35 X sepal length < 5.95v

-> Iris virginica |- --> [ris versicolor
47/48 ]

Figure 6.7 Rules with exceptions for the iris data.



211

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

examples that satisfy it divided by the number that satisfy its condition but not
its conclusion. For example, the condition in the top center box applies to 52 of
the examples, and 49 of them are Iris versicolor. The strength of this represen-
tation is that you can get a very good feeling for the effect of the rules from the
boxes toward the left-hand side; the boxes at the right cover just a few excep-
tional cases.

To create these rules, the default is first set to Iris setosa by taking the most
frequently occurring class in the dataset. This is an arbitrary choice because for
this dataset all classes occur exactly 50 times; as shown in Figure 6.7 this default
“rule” is correct in 50 of 150 cases. Then the best rule that predicts another class
is sought. In this case it is

if petal length > 2.45 and petal length < 5.355
and petal width < 1.75 then Iris versicolor

This rule covers 52 instances, of which 49 are Iris versicolor. It divides the dataset
into two subsets: the 52 instances that do satisfy the condition of the rule and
the remaining 98 that do not.

We work on the former subset first. The default class for these instances is
Iris versicolor: there are only three exceptions, all of which happen to be Iris
virginica. The best rule for this subset that does not predict Iris versicolor is
identified next:

if petal length > 4.95 and petal width < 1.55 then Iris virginica

It covers two of the three Iris virginicas and nothing else. Again it divides the
subset into two: those instances that satisfy its condition and those that do
not. Fortunately, in this case, all instances that satisfy the condition do
indeed have the class Iris virginica, so there is no need for a further exception.
However, the remaining instances still include the third Iris virginica, along with
49 Iris versicolors, which are the default at this point. Again the best rule is
sought:

if sepal length < 4.95 and sepal width > 2.45 then Iris virginica

This rule covers the remaining Iris virginica and nothing else, so it also has no
exceptions. Furthermore, all remaining instances in the subset that do not satisfy
its condition have the class Iris versicolor, which is the default, so no more needs
to be done.

Return now to the second subset created by the initial rule, the instances that
do not satisfy the condition

petal length > 2.45 and petal length < 5.355 and petal width < 1.75



6.2  CLASSIFICATION RULES 2113

Of the rules for these instances that do not predict the default class Iris setosa,
the best is

if petal length > 3.35 then Iris virginica

It covers all 47 Iris virginicas that are in the example set (3 were removed by the
first rule, as explained previously). It also covers 1 Iris versicolor. This needs to
be taken care of as an exception, by the final rule:

if petal length < 4.85 and sepal length < 5.95 then Iris versicolor

Fortunately, the set of instances that do not satisfy its condition are all the
default, Iris sefosa. Thus the procedure is finished.

The rules that are produced have the property that most of the examples are
covered by the high-level rules and the lower-level ones really do represent
exceptions. For example, the last exception clause in the preceding rules and the
deeply nested else clause both cover a solitary example, and removing them
would have little effect. Even the remaining nested exception rule covers only
two examples. Thus one can get an excellent feeling for what the rules do by
ignoring all the deeper structure and looking only at the first level or two. That
is the attraction of rules with exceptions.

Discussion

All algorithms for producing classification rules that we have described use the
basic covering or separate-and-conquer approach. For the simple, noise-free
case this produces PRISM (Cendrowska 1987), an algorithm that is simple and
easy to understand. When applied to two-class problems with the closed world
assumption, it is only necessary to produce rules for one class: then the rules
are in disjunctive normal form and can be executed on test instances without
any ambiguity arising. When applied to multiclass problems, a separate rule set
is produced for each class: thus a test instance may be assigned to more than
one class, or to no class, and further heuristics are necessary if a unique pre-
diction is sought.

To reduce overfitting in noisy situations, it is necessary to produce rules that
are not “perfect” even on the training set. To do this it is necessary to have a
measure for the “goodness,” or worth, of a rule. With such a measure it is then
possible to abandon the class-by-class approach of the basic covering algorithm
and start by generating the very best rule, regardless of which class it predicts,
and then remove all examples covered by this rule and continue the process.
This yields a method for producing a decision list rather than a set of inde-
pendent classification rules, and decision lists have the important advantage that
they do not generate ambiguities when interpreted.



214

6.3

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

The idea of incremental reduced-error pruning is due to Fiirnkranz
and Widmer (1994) and forms the basis for fast and effective rule induction.
The RIPPER rule learner is due to Cohen (1995), although the published
description appears to differ from the implementation in precisely how
the description length (DL) affects the stopping condition. What we have pre-
sented here is the basic idea of the algorithm; there are many more details in
the implementation.

The whole question of measuring the value of a rule has not yet been satis-
factorily resolved. Many different measures have been proposed, some blatantly
heuristic and others based on information-theoretical or probabilistic grounds.
However, there seems to be no consensus on what the best measure to use is.
An extensive theoretical study of various criteria has been performed by
Fiirnkranz and Flach (2005).

The rule-learning method based on partial decision trees was developed by
Frank and Witten (1998). It produces rule sets that are as accurate as those gen-
erated by C4.5 and more accurate than other fast rule-induction methods.
However, its main advantage over other schemes is not performance but sim-
plicity: by combining the top-down decision tree induction method with sepa-
rate-and-conquer rule learning, it produces good rule sets without any need for
global optimization.

The procedure for generating rules with exceptions was developed as an
option in the Induct system by Gaines and Compton (1995), who called them
ripple-down rules. In an experiment with a large medical dataset (22,000
instances, 32 attributes, and 60 classes), they found that people can understand
large systems of rules with exceptions more readily than equivalent systems of
regular rules because that is the way that they think about the complex medical
diagnoses that are involved. Richards and Compton (1998) describe their role
as an alternative to classic knowledge engineering.

Extending linear models

Section 4.6 described how simple linear models can be used for classification in
situations where all attributes are numeric. Their biggest disadvantage is that
they can only represent linear boundaries between classes, which makes them
too simple for many practical applications. Support vector machines use linear
models to implement nonlinear class boundaries. (Although it is a widely
used term, support vector machines is something of a misnomer: these are
algorithms, not machines.) How can this be possible? The trick is easy: trans-
form the input using a nonlinear mapping; in other words, transform the
instance space into a new space. With a nonlinear mapping, a straight line in
the new space doesn’t look straight in the original instance space. A linear model



6.3 EXTENDING LINEAR MODELS 2] 5

constructed in the new space can represent a nonlinear decision boundary in
the original space.

Imagine applying this idea directly to the ordinary linear models in Section
4.6. For example, the original set of attributes could be replaced by one giving
all products of n factors that can be constructed from these attributes. An
example for two attributes, including all products with three factors, is

3 2 2 3
X =wa;, +wya,a, + wia,a; +w,a;.

Here, x is the outcome, a, and a, are the two attribute values, and there are four
weights w; to be learned. As described in Section 4.6, the result can be used for
classification by training one linear system for each class and assigning an
unknown instance to the class that gives the greatest output x—the standard
technique of multiresponse linear regression. Then, a, and a, will be the attrib-
ute values for the test instance. To generate a linear model in the space spanned
by these products, each training instance is mapped into the new space by
computing all possible three-factor products of its two attribute values. The
learning algorithm is then applied to the transformed instances. To classify an
instance, it is processed by the same transformation prior to classification. There
is nothing to stop us from adding in more synthetic attributes. For example, if
a constant term were included, the original attributes and all two-factor prod-
ucts of them would yield a total of eight weights to be learned. (Alternatively,
adding an additional attribute whose value was always a constant would have
the same effect.) Indeed, polynomials of sufficiently high degree can approxi-
mate arbitrary decision boundaries to any required accuracy.

It seems too good to be true—and it is. As you will probably have guessed,
problems arise with this procedure because of the large number of coefficients
introduced by the transformation in any realistic setting. The first snag is com-
putational complexity. With 10 attributes in the original dataset, suppose we
want to include all products with five factors: then the learning algorithm will
have to determine more than 2000 coefficients. If its run time is cubic in the
number of attributes, as it is for linear regression, training will be infeasible.
That is a problem of practicality. The second problem is one of principle: over-
fitting. If the number of coefficients is large relative to the number of training
instances, the resulting model will be “too nonlinear”—it will overfit the train-
ing data. There are just too many parameters in the model.

The maximum margin hyperplane

Support vector machines solve both problems. They are based on an algorithm
that finds a special kind of linear model: the maximum margin hyperplane. We
already know what a hyperplane is—it’s just another word for a linear model.
To visualize a maximum margin hyperplane, imagine a two-class dataset whose



216

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

maximum margin hyperplane \

support vectors

Figure 6.8 A maximum margin hyperplane.

classes are linearly separable; that is, there is a hyperplane in instance space that
classifies all training instances correctly. The maximum margin hyperplane is
the one that gives the greatest separation between the classes—it comes no closer
to either than it has to. An example is shown in Figure 6.8, in which the classes
are represented by open and filled circles, respectively. Technically, the convex
hull of a set of points is the tightest enclosing convex polygon: its outline
emerges when you connect every point of the set to every other point. Because
we have supposed that the two classes are linearly separable, their convex hulls
cannot overlap. Among all hyperplanes that separate the classes, the maximum
margin hyperplane is the one that is as far away as possible from both convex
hulls—it is the perpendicular bisector of the shortest line connecting the hulls,
which is shown dashed in the figure.

The instances that are closest to the maximum margin hyperplane—the ones
with minimum distance to it—are called support vectors. There is always at least
one support vector for each class, and often there are more. The important thing
is that the set of support vectors uniquely defines the maximum margin hyper-
plane for the learning problem. Given the support vectors for the two classes,
we can easily construct the maximum margin hyperplane. All other training
instances are irrelevant—they can be deleted without changing the position and
orientation of the hyperplane.

A hyperplane separating the two classes might be written

X =w,+wa, +w,a,



6.3 EXTENDING LINEAR MODELS 2] 7

in the two-attribute case, where a, and a, are the attribute values, and there are
three weights w; to be learned. However, the equation defining the maximum
margin hyperplane can be written in another form, in terms of the support
vectors. Write the class value y of a training instance as either 1 (for yes, it is
in this class) or —1 (for no, it is not). Then the maximum margin hyperplane
is

x=b+Y o,ya(i)-a.
iis support vector

Here, y; is the class value of training instance a(i); while b and ¢; are numeric
parameters that have to be determined by the learning algorithm. Note that a(i)
and a are vectors. The vector a represents a test instance—just as the vector
[a1, a,] represented a test instance in the earlier formulation. The vectors a(i)
are the support vectors, those circled in Figure 6.8; they are selected members
of the training set. The term a(i)-a represents the dot product of the test instance
with one of the support vectors. If you are not familiar with dot product nota-
tion, you should still be able to understand the gist of what follows: just think
of a(i) as the whole set of attribute values for the ith support vector. Finally, b
and ¢ are parameters that determine the hyperplane, just as the weights wy, wy,
and w, are parameters that determine the hyperplane in the earlier formulation.

It turns out that finding the support vectors for the instance sets and deter-
mining the parameters b and ¢; belongs to a standard class of optimization
problems known as constrained quadratic optimization. There are off-the-shelf
software packages for solving these problems (see Fletcher 1987 for a com-
prehensive and practical account of solution methods). However, the com-
putational complexity can be reduced, and learning can be accelerated, if
special-purpose algorithms for training support vector machines are applied—
but the details of these algorithms lie beyond the scope of this book (Platt 1998).

Nonlinear class boundaries

We motivated the introduction of support vector machines by claiming that
they can be used to model nonlinear class boundaries. However, so far we have
only described the linear case. Consider what happens when an attribute trans-
formation, as described previously, is applied to the training data before deter-
mining the maximum margin hyperplane. Recall that there are two problems
with the straightforward application of such transformations to linear models:
infeasible computational complexity on the one hand and overfitting on the
other.

With support vectors, overfitting is unlikely to occur. The reason is that it is
inevitably associated with instability: changing one or two instance vectors will
make sweeping changes to large sections of the decision boundary. But the



218

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

maximum margin hyperplane is relatively stable: it only moves if training
instances are added or deleted that are support vectors—and this is true even
in the high-dimensional space spanned by the nonlinear transformation. Over-
fitting is caused by too much flexibility in the decision boundary. The support
vectors are global representatives of the whole set of training points, and there
are usually few of them, which gives little flexibility. Thus overfitting is unlikely
to occur.

What about computational complexity? This is still a problem. Suppose that
the transformed space is a high-dimensional one so that the transformed
support vectors and test instance have many components. According to the pre-
ceding equation, every time an instance is classified its dot product with all
support vectors must be calculated. In the high-dimensional space produced by
the nonlinear mapping this is rather expensive. Obtaining the dot product
involves one multiplication and one addition for each attribute, and the number
of attributes in the new space can be huge. This problem occurs not only during
classification but also during training, because the optimization algorithms have
to calculate the same dot products very frequently.

Fortunately, it turns out that it is possible to calculate the dot product before
the nonlinear mapping is performed, on the original attribute set. A high-
dimensional version of the preceding equation is simply

x:b+zaiyi(a(i)'a)n>

where 7 is chosen as the number of factors in the transformation (three in the
example we used earlier). If you expand the term (a(i)-a)", you will find that it
contains all the high-dimensional terms that would have been involved if the
test and training vectors were first transformed by including all products of n
factors and the dot product was taken of the result. (If you actually do the cal-
culation, you will notice that some constant factors—binomial coefficients—
are introduced. However, these do not matter: it is the dimensionality of the
space that concerns us; the constants merely scale the axes.) Because of this
mathematical equivalence, the dot products can be computed in the original
low-dimensional space, and the problem becomes feasible. In implementation
terms, you take a software package for constrained quadratic optimization and
every time a(i)-a is evaluated you evaluate (a(7)-a)" instead. It’s as simple as that,
because in both the optimization and the classification algorithms these vectors
are only ever used in this dot product form. The training vectors, including the
support vectors, and the test instance all remain in the original low-dimensional
space throughout the calculations.

The function (x-y)", which computes the dot product of two vectors x and
y and raises the result to the power n, is called a polynomial kernel. A good



6.3 EXTENDING LINEAR MODELS 2] g

way of choosing the value of n is to start with 1 (a linear model) and incre-
ment it until the estimated error ceases to improve. Usually, quite small values
suffice.

Other kernel functions can be used instead to implement different nonlinear
mappings. Two that are often suggested are the radial basis function (RBF) kernel
and the sigmoid kernel. Which one produces the best results depends on the
application, although the differences are rarely large in practice. It is interesting
to note that a support vector machine with the RBF kernel is simply a type of
neural network called an RBF network (which we describe later), and one with
the sigmoid kernel implements another type of neural network, a multilayer
perceptron with one hidden layer (also described later).

Throughout this section, we have assumed that the training data is linearly
separable—either in the instance space or in the new space spanned by the non-
linear mapping. It turns out that support vector machines can be generalized to
the case where the training data is not separable. This is accomplished by placing
an upper bound on the preceding coefficients ¢;. Unfortunately, this parameter
must be chosen by the user, and the best setting can only be determined by
experimentation. Also, in all but trivial cases, it is not possible to determine a
priori whether the data is linearly separable or not.

Finally, we should mention that compared with other methods such as deci-
sion tree learners, even the fastest training algorithms for support vector
machines are slow when applied in the nonlinear setting. On the other hand,
they often produce very accurate classifiers because subtle and complex deci-
sion boundaries can be obtained.

Support vector regression

The concept of a maximum margin hyperplane only applies to classification.
However, support vector machine algorithms have been developed for numeric
prediction that share many of the properties encountered in the classification
case: they produce a model that can usually be expressed in terms of a few
support vectors and can be applied to nonlinear problems using kernel func-
tions. As with regular support vector machines, we will describe the concepts
involved but do not attempt to describe the algorithms that actually perform the
work.

As with linear regression, covered in Section 4.6, the basic idea is to find a
function that approximates the training points well by minimizing the predic-
tion error. The crucial difference is that all deviations up to a user-specified
parameter € are simply discarded. Also, when minimizing the error, the risk of
overfitting is reduced by simultaneously trying to maximize the flatness of the
function. Another difference is that what is minimized is normally the predic-



110

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

tions” absolute error instead of the squared error used in linear regression.
(There are, however, versions of the algorithm that use the squared error
instead.)

A user-specified parameter € defines a tube around the regression function
in which errors are ignored: for linear support vector regression, the tube is a
cylinder. If all training points can fit within a tube of width 2¢, the algorithm
outputs the function in the middle of the flattest tube that encloses them. In
this case the total perceived error is zero. Figure 6.9(a) shows a regression
problem with one attribute, a numeric class, and eight instances. In this case €
was set to 1, so the width of the tube around the regression function (indicated
by dotted lines) is 2. Figure 6.9(b) shows the outcome of the learning process
when € is set to 2. As you can see, the wider tube makes it possible to learn a
flatter function.

The value of € controls how closely the function will fit the training data. Too
large a value will produce a meaningless predictor—in the extreme case, when
2¢ exceeds the range of class values in the training data, the regression line is
horizontal and the algorithm just predicts the mean class value. On the other
hand, for small values of € there may be no tube that encloses all the data. In
that case some training points will have nonzero error, and there will be a trade-
off between the prediction error and the tube’s flatness. In Figure 6.9(c), € was
set to 0.5 and there is no tube of width 1 that encloses all the data.

For the linear case, the support vector regression function can be written

X =b+20¢ia(i)-a.

1is support vector

As with classification, the dot product can be replaced by a kernel function for
nonlinear problems. The support vectors are all those points that do not fall
strictly within the tube—that is, the points outside the tube and on its border.
As with classification, all other points have coefficient 0 and can be deleted from
the training data without changing the outcome of the learning process. In con-
trast to the classification case, the o; may be negative.

We have mentioned that as well as minimizing the error, the algorithm simul-
taneously tries to maximize the flatness of the regression function. In Figure
6.9(a) and (b), where there is a tube that encloses all the training data, the algo-
rithm simply outputs the flattest tube that does so. However, in Figure 6.9(c)
there is no tube with error 0, and a tradeoff is struck between the prediction
error and the tube’s flatness. This tradeoff is controlled by enforcing an upper
limit C on the absolute value of the coefficients ¢;. The upper limit restricts the
influence of the support vectors on the shape of the regression function and is
a parameter that the user must specify in addition to & The larger C is, the more
closely the function can fit the data. In the degenerate case € = 0 the algorithm
simply performs least-absolute-error regression under the coefficient size con-



6.3 EXTENDING LINEAR MODELS

10 ' ' | |
X
8 r V : |
- .
6 9 . |
s
4 b |
| i
0 ) . | |
0 2 ' ° 8 10
(a) attribute
10 ' ' | |
____________________ e
8 S X i
X
6 F - |
§ Ny
e
4 s sememn -
| i
O : . * 1
0 2 ' ° 8 10
v attribute
Z
(9]
| i
O : . : 1
O 2 ' ° 8 10
o attribute

Figure 6.9 Support vector regression: (a) €= 1, (b) €=2, and (c) €=0.5.

111



111

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

straint, and all training instances become support vectors. Conversely, if € is
large enough that the tube can enclose all the data, the error becomes zero, there
is no tradeoff to make, and the algorithm outputs the flattest tube that encloses
the data irrespective of the value of C.

The kernel perceptron

In Section 4.6 we introduced the perceptron algorithm for learning a linear clas-
sifier. It turns out that the kernel trick can also be used to upgrade this algo-
rithm to learn nonlinear decision boundaries. To see this, we first revisit the
linear case. The perceptron algorithm repeatedly iterates through the training
data instance by instance and updates the weight vector every time one of these
instances is misclassified based on the weights learned so far. The weight vector
is updated simply by adding or subtracting the instance’s attribute values to or
from it. This means that the final weight vector is just the sum of the instances
that have been misclassified. The perceptron makes its predictions based on
whether

Z,» w;a;

is greater or less than zero—where w; is the weight for the ith attribute and a;
the corresponding attribute value of the instance that we wish to classify.
Instead, we could use

3.3 ()

Here, a’(j) is the jth misclassified training instance, a’(j); is its ith attribute value,
and y(7) is its class value (either +1 or —1). To implement this we no longer keep
track of an explicit weight vector: we simply store the instances misclassified so
far and use the preceding expression to make a prediction.

It looks like we’ve gained nothing—in fact, the algorithm is much slower
because it iterates through all misclassified training instances every time a pre-
diction is made. However, closer inspection of this formula reveals that it can
be expressed in terms of dot products between instances. First, swap the sum-
mation signs to yield

ij(j)zia,(j)iai'

The second sum is just a dot product between two instances and can be written
as

X r(a’)-a.



6.3 EXTENDING LINEAR MODELS 223

This rings a bell! A similar expression for support vector machines enabled the
use of kernels. Indeed, we can apply exactly the same trick here and use a kernel
function instead of the dot product. Writing this function as K(. . .) gives

X y(K@(j)a).

In this way the perceptron algorithm can learn a nonlinear classifier simply by
keeping track of the instances that have been misclassified during the training
process and using this expression to form each prediction.

If a separating hyperplane exists in the high-dimensional space implicitly
created by the kernel function, this algorithm will learn one. However, it won’t
learn the maximum margin hyperplane found by a support vector machine clas-
sifier. This means that classification performance is usually worse. On the plus
side, the algorithm is easy to implement and supports incremental learning.

This classifier is called the kernel perceptron. It turns out that all sorts of algo-
rithms for learning linear models can be upgraded by applying the kernel trick
in a similar fashion. For example, logistic regression can be turned into kernel
logistic regression. The same applies to regression problems: linear regression can
also be upgraded using kernels. A drawback of these advanced methods for
linear and logistic regression (if they are done in a straightforward manner) is
that the solution is not “sparse”: every training instance contributes to the solu-
tion vector. In support vector machines and the kernel perceptron, only some
of the training instances affect the solution, and this can make a big difference
to computational efficiency.

The solution vector found by the perceptron algorithm depends greatly on
the order in which the instances are encountered. One way to make the algo-
rithm more stable is to use all the weight vectors encountered during learning,
not just the final one, letting them vote on a prediction. Each weight vector con-
tributes a certain number of votes. Intuitively, the “correctness” of a weight
vector can be measured roughly as the number of successive trials after its incep-
tion in which it correctly classified subsequent instances and thus didn’t have to
be changed. This measure can be used as the number of votes given to the weight
vector, giving an algorithm known as the voted perceptron that performs almost
as well as a support vector machine. (Note that, as previously mentioned, the
various weight vectors in the voted perceptron don’t need to be stored explic-
itly, and the kernel trick can be applied here too.)

Multilayer perceptrons

Using a kernel is not the only way to create a nonlinear classifier based on the
perceptron. In fact, kernel functions are a recent development in machine



124

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

learning. Previously, neural network proponents used a different approach
for nonlinear classification: they connected many simple perceptron-like
models in a hierarchical structure. This can represent nonlinear decision
boundaries.

Section 4.6 explained that a perceptron represents a hyperplane in instance
space. We mentioned there that it is sometimes described as an artificial
“neuron.” Of course, human and animal brains successfully undertake very
complex classification tasks—for example, image recognition. The functional-
ity of each individual neuron in a brain is certainly not sufficient to perform
these feats. How can they be solved by brain-like structures? The answer lies in
the fact that the neurons in the brain are massively interconnected, allowing a
problem to be decomposed into subproblems that can be solved at the neuron
level. This observation inspired the development of networks of artificial
neurons—neural nets.

Consider the simple datasets in Figure 6.10. Figure 6.10(a) shows a two-
dimensional instance space with four instances that have classes 0 and 1, repre-
sented by white and black dots, respectively. No matter how you draw a straight
line through this space, you will not be able to find one that separates all the
black points from all the white ones. In other words, the problem is not linearly
separable, and the simple perceptron algorithm will fail to generate a separat-
ing hyperplane (in this two-dimensional instance space a hyperplane is just a
straight line). The situation is different in Figure 6.10(b) and Figure 6.10(c):
both these problems are linearly separable. The same holds for Figure
6.10(d), which shows two points in a one-dimensional instance space (in the
case of one dimension the separating hyperplane degenerates to a separating
point).

If you are familiar with propositional logic, you may have noticed that the
four situations in Figure 6.10 correspond to four types of logical connectives.
Figure 6.10(a) represents a logical XOR, where the class is 1 if and only if exactly
one of the attributes has value 1. Figure 6.10(b) represents logical AND, where
the class is 1 if and only if both attributes have value 1. Figure 6.10(c) repre-
sents OR, where the class is 0 only if both attributes have value 0. Figure 6.10(d)
represents NOT, where the class is 0 if and only if the attribute has value 1.
Because the last three are linearly separable, a perceptron can represent AND,
OR, and NOT. Indeed, perceptrons for the corresponding datasets are shown in
Figure 6.10(f) through (h) respectively. However, a simple perceptron cannot
represent XOR, because that is not linearly separable. To build a classifier for
this type of problem a single perceptron is not sufficient: we need several of
them.

Figure 6.10(e) shows a network with three per