l earni Nng fv*om data

Su\ppomL vector machines and

neural networks

Similarities and Cliﬁev*ences

Vojislav Kecman, The University of Auckland, Auckland, NZ
Slides accompanying The MIT Press' book: Learning and Soft Computing



The slides shown here are developed around the basic notion of

Learning from Experimental Data (samples, observations, records,
measurements, patterns, examples) by SVMs and NNs

as presented in the book

LEARNING AND SOFT COMPUTING

Support Vector Machines, Neural Networks and Fuzzy Logic Models
Author:Vojislav KECMAN
The MIT Press, Cambridge, MA, 2001
ISBN 0-262-11255-8
608 pp., 268 illustrations, 47 examples, 155 problems

They are intended to support both  the instructors in the development and delivery
of course content and the learners in acquiring the ideas and techniques
presented in the book in a more pleasant way than just reading.



TOPICSInINTRODUCTARY PART

*SVMs & NNs as the BLACK box modeling, and
FLMs as the WHITE box modeling

*Motivation and basics. Graphic presentation of
any approximation or classification scheme leads
to the so-called NNs and/or SVMs

*Curve and surface fittings, multivariate function
approximation, nonlinear optimization and NN



NN, SVM AND FL MODELING

y

NNs & SVMs

Black-Box

No previous knowledge, but there
aremeasurements, observations,
records, data.

Behind NN stands the idea t&farning
from the data.

FL Models

o

S

White-Box
Structured knowledge
(experience, expertise or heurisfjcs
IF - THEN rules are the most typical
examples of the structured knowledge

Example:Controlling the distance betweg
two cars.

R1: IF the speed ibw AND
the distance ismall
THEN the force on brake should bmall
R2: IF the speed immedium
AND the distance ismall
THEN the force on brake should bey
R3: IF the speed ikigh
AND the distance ismall
THEN the force on brake should kery big

Behind FLM stands the idea of
embedding human knowledgéanto
workable algorithms.

At many instances we do have bosbme knowledg@andsome data.

X
——
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—

This is the most commogray box situation covered by the paradigm off
Neuro-Fuzzyor Fuzzy-Neuro models.
If we do not have any prior knowledge AND we do not have any

measurement&y all accounts very hopeless situation indeiganay be
hard to expect or believe that the problem at hand may be approachgd
and solved easily. This isreo-color box situation.



Classical approximation techniques in NN graphical appearance
FOURIER SERIES
AMPLITUDES and PHASES of sine (cosine) waves are  ?, but
frequencies are known because
Mr Joseph Fourier has selected frequencies for us -> they are
INTEGER multiplies of some pre-selected base frequency.

And the problem is LINEAR! It is ‘same’ with
ispre\;cribed % oo POLYNOMIALS

% 0= F(x)

BUT, what if we want to
learn the frequencies?

11 NONLINEAR
N : +1 W NIN
F(X) = Zaksm(kx), or b coskx), or both PI;(ESEEM S 1



N ow,wewant to find Fourier ‘sries modd y = W9 n(W,X) of the under lyi ng
dependency Y= 2.5 9N(1.5X), known to us but not to the learning m achine (al gorithm )

W eknowt hat hef undioni s grnusbut wedon' tknowi tsf requency and am plitude. Thus byus ngt he
traning datast {x, df, wewantto m odd thiss/g em withthe NN m odd cond €ing of asngleneuron in HL

(havi ng g nus as an adivation fund ion) as given aoove.

The cost function J dependence upon A (dashed) and w (solid)
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N ow,wewant to find Fourier ‘sries modd y = W9 n(W,X) of the under lyi ng
dependency Y= 2.5 9n(1.5X).

X
Wl: W

W eknowt hat hef undioni s grnusbut wedon' tknowi tsf requency and am plitude. Thus byus ngt he
traning datast {x, d}, wewant to modd this sy em with the NN m odd cons ging of asngleneuron in HL
(havi ng g nus as an adivation fund ion) as given aoove.

The cost function J dependence upon A (dashed) and w (solid)

J = sun(e?) = sun(d - 0)?

¢‘::“‘ o‘
2SS
»n? \;o"“

50F

250 )
2001 : 5 400 f
sund -w,3 n(w,X)) i, |
\ :
\ < 3004 .
150} B :
5 £ .
g 2200 ;
2 2 e :
81001 ©1004 - 5
4 3
0> . < @

6

Weight w=[A; W] Frequency w 2 2 Amplitude A



Another classical approximation scheme is a
POLYNOMIAL SERIES

F(X) = iwixi

Is prescribed

X V: % y, W, X g 0 = F(x)
4




Another classical approximation scheme is a
POLYNOMIAL SERIES

F(X) = iwixi

\ i\ w
With a prescribed s prescribed@

(integer) exponents N\
this is againLINEAR @ .

APPROXIMATION ) - y o %i 0=F(x)
SCHEME. Linear in A j
terms of parameters 5

to learn and not Iin @y,

terms of the resulting
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function. This one Is e
NL function for i > 1.



Another classical approximation scheme is a
POLYNOMIAL SERIES

F(X) = iwixi

\ i\ w
With a prescribed s prescribed@

(integer) exponents \
this is againLINEAR @ .

APPROXIMATION - v o %i 0=F(x)
SCHEME. Linear in A j
S
y.

terms of parameters
to learn and not In s :
. The following
terms of the resulting L :
o approximation scheme is a
approximation Y

NOVEL ONE called NN

function. This one is * . or RBF network here.

NL function for 1 > 1.



Approximation of
some

A
Wi+ Qis 1o

NL 1D function by
Gaussian

Radial Basis Function

(RBF)

Vi

1+t

0

Wit2 Pis2,

In 1-D casdorget

these two inputs. The | <
p Y S “

are here Just ic-denote

that the basic structure

of the NN Is the sanie
for ANY-

DIMENSIONAL
INPUT

0=F(x)



Approximation of somélL 2D function by

unctiorkEBF)

GaussliarRadial Basis
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Approximation of soméll. 2D function by
aussiarRadial Basis/Function&28F)
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The learning machine that uses data to find the
APPROXIMATING FUNCTION (in regression
problems) or the SEPARATION BOUNDARY (in
classification, pattern recognition problems), is
the same In high-dimensional situations.

It IS elther the so-called SVM or the NN.

WHAT are DIFFERENCES and SIMILARITIES?



The learning machine that uses data to find the
APPROXIMATING FUNCTION (in regression
problems) or the SEPARATION BOUNDARY (in
classification, pattern recognition problems), is
the same In high-dimensional situations.

It IS elther the so-called SVM or the NN.

WHAT are DIFFERENCES and SIMILARITIES?

WHATCH CAREFULLY NOW Il



This Is a Neural Network,




and, this is a Support Vector Machine.
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This Is a Neural Network,




and, this is a Support Vector Machine.

v eg 1 W F(x) = Z}]zlequ(X,Cj,Zj)




and, this is a Support Vector Machine.

v % 1 W F(x) = ijleqﬁj(X,Cj,Zj)

)

1+1 - ; .
’ There Is nho difference jin

epresentational capacity, 1.e., in ¢
structure.

However, there is an important
difference INLEARNING.



Therefore,

let’s talk about basics of

the learning from data
first.

Note that you may find different names for the L from D:

identification, estimation,
classification,
pattern recognition, function
approximation, curve or surface
fitting etc.



All these tasks used to be
solved previously.

Thus, THERE IS THE QUESTION:

Is there anything new In
respect to the classical
statistical inference?



The classicalregressionand (Bayesian)classification statistical
techniques are based on theery strict assumptionthat probability

distribution models or probability-density functions are known.

Classical statistical inference Is based on the
following three fundamental assumptions:
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The classicalregressionand (Bayesian)classification statistical
techniques are based on theery strict assumptionthat probability

distribution models or probability-density functions are known.

Classical statistical inference Is based on the
following three fundamental assumptions:

*Data can be modeled by a set of linear in parameter
functions; this is a foundation of a parametric paradigm in
learning from experimental data.

*In the most of real-life problems, a stochastic component of
data is the normal probability distribution law, i.e., the
underlying joint probability distribution is Gaussian.

*Due to the second assumptiorthe induction paradigm for
parameter estimation isthe maximum likelihood method that
IS reduced to theminimization of the sum-of-errors-squares
cost function in most engineering applications.
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relied, turned out to be inappropriate for many contemporary real-
life problems (Vapnik, 1998) due to the facts that:
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All three assumptions on which the classical statistical paradigm
relied, turned out to be inappropriate for many contemporary real-
life problems (Vapnik, 1998) due to the facts that:

*modern problems are high-dimensional, and if the underlying
mapping Iis not very smooth the linear paradigm needs an
exponentially increasing number of terms with an increasing
dimensionality of the input spaceX, I.e., with an increase in the
number of independent variables. This is known as ‘the curse of
dimensionality’,
*the underlying real-life data generation laws may typically
be very far from the normal distribution and a model-builder
must consider this difference In order to construct an
effective learning algorithm,
*from the first two objections it follows that the maximum likelihood
estimator (and consequently the sum-of-error-squares cost function)
should be replaced by anew induction paradigm that is uniformly
better, in order to modelnon-Gaussian distributions



There Is a real life fact

the probability-density functions are TOTALLY unknown,
and there is the question
HOW TO PERFORM a distribution-free
REGRESSIONor CLASSIFICATION ?



There Is a real life fact

the probability-density functions are TOTALLY unknown,

and there is the question
HOW TO PERFORM a distribution-free
REGRESSIONor CLASSIFICATION ?

Mostly, all we have are recordéXXPERIMENTAL DATA (training
patterns, samples, observations, records, examples) that are usus
high-dimensionalandscarcein present day applications.

High-dimensional spaces seem tol@ITIfyINgly empty and
our learning algorithms (i.e., machines) should be able to operate in.

spaces and tearn from sparse data
There Is an old saying thegdundancy provides knowleddstated
simpler — we expect that the more data pairs we have the better res
will be. These essentials are depicted in the next figure.



Error
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mall samplé} Medium sample Large sample
oISy data set
oiseless data set
pror S ~—————

Data size |

Dependency of the modeling error on the training data set size.



Error ]

final ;

Small sampile Medium sample Large sample

oISy data set
oiseless data set

How

Data size |

Dependency of the modeling error on the training data set size.

Glivenko -Cantelli theorem states that:
Distribution function P ,,(X) - P(x)
as the number of data / - .
ever, for both regression and classification we need

probabllity density functions  p(x), I.e., p(x|w) and not a

distribution P (x).



Therefore, there is a question:

whether p .,,(X) - p(x)
as the number ofdata [ — o

Answer is both not straight and not guaranteed,

despite the fact that

Sp(X)dx = P(x).
(Analogy with a classic problem Ax =y, x=  Aly)!



Therefore, there is a question:

whether p .,,(X) - p(x)
as the number ofdata [ — o

Answer is both not straight and not guaranteed,

despite the fact that

Sp(X)dx = P(x).
(Analogy with a classic problem Ax =y, x=  Aly)!

What is needed here is the theory of
UNIFORM CONVERGENCE of the set of functions
Implemented by a model, i.e., learning machine
(Vapnik, Chervonenkis, 1960-70ties).

We, will skip a discussion about this part here.
SKkip it, but not forget it.



Here, we discussonlinear and 'nonparametric’ models
exemplified by NNs and SVMs.

Nonlinear means two things:

1) our model class will be not restricted to linear input-outp
maps and,

2) the dependence of thest functiorthat measures the
goodness of our model, will bbnlinear in respect to the
unknown parameters

In passing it may be noted the second nonlinearity Is the
part of modeling that causes most of the problems



‘Nonparametric’ does not mean that our models do not ha
parameters at all. On contrary,

their learning (meaning selection, identification, estimatior
fitting or tuning) Is the crucial issue here.



‘Nonparametric’ does not mean that our models do not ha

parameters at

all. On contrary,

their learning (meaning selection, identification, estimatior
fitting or tuning) Is the crucial issue here.

However, unlike in classical statistical inference, nthey
are not predefined but rathetheir number depends on the
training data used.

In other wordsparameterst
modelare data drivenin suc

nat define the capacity of the

N a way a® match the model

capacity to the data complexit¥his is a basic paradigm of
the structural risk minimization (SRM) introduced by Vapni
and Chervonenkis and their coworkers.



The main characteristic
of all modern problem:
IS themapping betweel
the high-dimensional
spaces.

Let’s see the following pattern recognition (classification) example!



Gender recognition problem: These two facedearaleor male?

F or
M??




Gender recognition problem: These two facedearaleor male?

F or
M??

There must be
something in the
geometry of our
faces. Here, 18
input variable$;

features, were |

M or

Problem from

Brunelli & Poggio |,
1993.

choser

T=ainr-
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evelaoir Lheckness
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P
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g af ewwordsabout t hedat ast 9§ zzandd mengond ity. Appr axi m a@onand
das ficionar € samef orayd mengond ityof t hei nput pace. N othing( !)but
dzedhanges But t he dhangei sDRASTIC.Highd mensond itym eansbot han
EXPLOSDNIinanumbe OFPARAM ETER® learn and a SPARSHEraning daa
.

Hijgh dim engond Paces em to be terrifyi ngly em ply.

q T
P
% PLANT ', p
Y
.
A
>T
Re==> R However, for 2 inputs (T and P)

N data do we need 2N or Rldata?



g af ewwordsabout t hedat ast 9§ zzandd mengond ity. Appr axi m a@onand
das ficionar € samef orayd mengond ityof t hei nput pace. N othing( !)but
dzedhanges But t he dhangei sDRASTIC.Highd mensond itym eansbot han
EXPLOSDNIinanumbe OFPARAM ETER® learn and a SPARSHEraning daa
.

Hijgh dim engond Paces em to be terrifyi ngly em ply.

q T
P
] —»| PLANT ', p
p ° .
T T (0] (0] '. (0]
N N ° Pe O\°
>T >T
Re=> R R2 ==> R Rn=> R

N data N data N' data



High dim engonad oaces areterifyingly em ply.
M any different rem edies proposed to resol ve this
CURSES DIM ENSDNALTY.

O neof propos storexl ve itisto utilize the BLESSN Gof SM OOTHNES
=) REGULARIATIONTHEORYe==)> RBFwhich contandas cd
Fl ines




CURSEf DIM ENSDNALTY and SPARSTY OFDATA.
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CURSE DIM ENSDNALTY and SPARSTY OFDATA.

Thenewes promidng tool FORW ORKNGUNDERTHESECONSTRANTSae
the SUPPORVECTORM ACHMESbhased on the STATISTICALLEARNNG
THEORYYVLADM RVAPNK and ALEKSEICHERV ONEN E).

W HATS THEont em porary BASICLEARNNGPROBLEM 777

LEARNTHEDEPENDENCYUNCTON M APPN G )from
SPARSEDATA ,under NOBE,iInHIGHDIM ENSDNALSPACE!

Recdd| - the redundancy promv des the know | edgel
A lot of data- ‘eas/ problem.

LET'S EXEM PLFY THE INFLUENCEOF A DATA SET SIZE
ON THE SIM PLESTRECOGNION PROBLEM
BINARYCLASSFICATION,i.e, DICHOTOMIATION.



CLASSFICATIONor PATTERNRECOGNITONEXAM PLE
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plenty of data (infinity). X* denotesthe PSEUD ONIVERSE.




CLASSFICATIONor PATTERNRECOGNITONEXAM PLE
Asume- Nomady didributed d ases sam ecovar iance
marioces Solutionis‘eas/ - ded 9on boundar y islinear
and defined by paran géer w = X* Qwhenthee is

plenty of data (infinity). X denot 8¢he PSEUD ONIVERSE.

\

/
/

Note that this
Solution follows
from the last two
assumptions in
classical inference!

» X; Gaussian datand
minimization of tle
sum-of-errors-
squares!




However, for agmdl sam ple -
Solution defined by w=X" DisNOLONGERGOODD NE!!

Becauss, for thisdata s, wewill obtain thissparat ion ling
[ | /




and,
for anot her data &gt wew ll obtain anot her $parat ion line.

Agan, for andl sam ple- /
a0l ution defined by w = X* DISNQEONGEFGOOEONE”'




W hatiscom m onfor both sgparat ion lines the red and the blue one.
Both have aSM ALLM ARG N.

W HATSW RONGY TH SM ALLM ARGN?
I isvay likdy that the new exam ples (i , [l}) will be wrongl y d ass fied.

\

Howeve, the quet ion is
J\%toDEFNE and FND
the

OPTM ALSEPARATON
~—  HYPERPLANE

G VEN (sam)
>DATASAI\/I PLES??
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The STATSTCAL LEARNNGTHEORYS DEVELOPED O SOLVE

PROBLEM 8 FNDNG THEOPTM ALSEPARATIONHYPERPLANE
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ISthe one that has
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LARGEST
MARGN

> on given
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Thus, let’'s show a little more formally,
the constructive part of
the statistical learning theory.
Vapnik and Chervonenkis introduced

a nested set of hypothesis (approximating or
decision) functions.

Nested set means that

H, H, L ...UH,, H,




Before presenting the basic ideas, clarifications regarding
terminology is highly desired because

a lot of confusion is caused by a  non-unified terminology

Approximation, or training, error g, ~ Empirical risk ~ Bias,
Estimation error ¢~ Variance ~ Confidence on the training error ~ VC
confidence interval,
Generalization (true, expected) errog & ~ Bound on test error ~

Error or \Guaranteed or true, risk,

Risk underflttlnq overfit ting

»
»

h ~ n, capacity

akization, or true, error €,



Another terminological Rashomons are the concepts of
Decision functions and/or hyperplanes and/or hypersurfaces,
Discriminant functions and/or hyperplanes and/or hypersurfaces,
Decision boundaries, (hyperplanes, hypersurfaces)
Separation lines, functions and/or hyperplanes and/or hypersurface:
Input space and feature space used to be the same
and then

SVM developers introduced feature space as the hidden layer
or imaginary z-space
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Another terminological Rashomons are the concepts of
Decision functions and/or hyperplanes and/or hypersurfaces,
Discriminant functions and/or hyperplanes and/or hypersurfaces,
Decision boundaries, (hyperplanes, hypersurfaces)
Separation lines, functions and/or hyperplanes and/or hypersurface:

Input space and feature space used to be the same
and then
SVM developers introduced feature space as the hidden layer
or imaginary z-space

The final contributing confusing terminology comes with an
Indicator function that is basicallythresholding function.

And we must not forget a CANONICAL HYPERPLANE !



Therefore, in other to reduce a level of confusion at the first-time-

readers, i.e., beginners, in the world of SVM, we developed the

LEARNSC software that should elucidate all these mathematical
objects, their relations andthe spaces they are living In.

Thus, the software that can be downloaded from the same site will
show the kind of figures below and a little more complex ones.

_ _ . _ The decision boundary or
Deflred value y Ind|(:4ator function j(x, w, b) = sign(d) N separating line is an intersec-
, Input x; tion of d(x, w, b) and an input

plane (X3, X2); d=w'x +b=0

Vg N ~—_ - > Input x;
The optimal separating hyperplane d(x, w>b,. ~ ~“———___——" __-—"7
1 H H H \\ ’//
Is an argument of indicator functon @ @ @ "TT~——___ _ __———



Therefore, in other to reduce a level of confusion at the first-time-

readers, i.e., beginners, in the world of SVM, we developed the

LEARNSC software that should elucidate all these mathematical
objects, their relations andthe spaces they are living In.

Thus, the software that can be downloaded from the same site will
show the kind of figures below and a little more complex ones.

The decision boundary or

Desired value y Indic4ator function i(x, w, b) = sign(d) N separating line is an intersec-
Input x; tion of d(x, w, b) and an input
N P! plane (x;, X2); d=w'x +b=0

Stars dehote s/u,pf) t vectors

>
Input x;

\\\ _ _
-~ -
\_——-——‘/ -

The optimal separating hyperplane d(x, w b)\ _
is an argument of indicator function =~ < TvU———___ ___————7"

That's it! Let’s fly hyperspaces!!!



However, before taking-off, a few more ‘similarities’

between NNs and SVMs follow

P

E=" (d - f(x W))? Classical multilayer perceptron
=1 Closengss to data
P

E= (q — f(xi ,W))Z + A ||Pf |f Regularization (RBF) NN

H/_J
Closenessto data Smoothness

[
=

P
E= gd—f(Xi,W)zz"‘ Q(l,h,n)  support Vector Machines
1=1

v
Closenesstodata Capacity of a machine

In the last expression the SRM principle uses the VC dimensidn
(defining model capacity) as a controlling parameter for minimizing
the generalization error E (i.e., risk R).



There are two basic, constructive approaches to the minimization of
the right hand side of previous equations (Vapnik, 1995 and 1998):

-choose an appropriate structure (order of polynomials,
number of HL neurons, number of rules in the FL model)
and, keeping the confidence interval fixed in this way,
minimize the training error (i.e., empirical risk), or

-keep the value of the training error fixed (equal to zero or
equal to some acceptable level) and minimize the confidenc
Interval.

ClassicalNNs implement the first approach(or some of its
sophisticated variants) andSVMs implement the second strategy.
In both cases the resulting model should resolve the trade-off
between under-fitting and over-fitting the training data.
The final model structure (order) should ideally
match thelearning machines capacityith training data complexity




O.K.

L et us do some more
formal,

meaning,

mathematical analysis of
SVMs learning!



The presentation will follow an idea ofg@ntle introduction, i.e., of a
gradual proceedingfrom the ‘simple’ cases to the more complex ant
Involved ones!

1) Linear Maximal Margin Classifier for Linearly ® O ®
Separable Data no samples overlapping. O O O

2) Linear Soft Margin Classifier

for Overlapping Classes L A g\

X

4) Regression by SV Machines that carelveer lineaor nonlinear!



1) Linear Maximal Margin Classifier for Linearly Separable Data

Binary classification - no samples overlapping

Given some training data

X1 Y)s -+ o & Y)Y -1, +1}

find the functionf(x, wy) L7f(x, w) which best approximates the
unknown discriminant (separation) functigr f(x).
mMearly separable data car
be separated by in infinite
number of linear
hyperplanes that can be
written as

f(x, w) =w'x + b

The problem is: find the
optimal separating
hyperplane



1) Optimal separating hyperplane is the one with
MAXIMAL MARGIN !
This hyperplane is uniquely determined by the vectors on the marg

the support vectors!

_MARGIN IS DEFINED by

w as follows:
M =2
|w]

PR (Vapnik, Chervonenkis ‘74)



The optimal canonical separating hyperplane (OC%El), a separating
hyperplane with the largest margin (definedMy= 2 / ||w||) specifies
support vectors,.e., training data points closest to it, which satis
y[wix +b] =1,] = 1, Ng At the same time, the OCSH must separ
data correctly, i.e., it should satisfy inequalities

yWwix +b] =1, =11

wherel denotes a number of training data &g stands for a number of
SV.
Note that maximization d1 means a minimization ¢jffw||.
Minimization of a norm of a hyperplane normal weight vecwi| [¥
Ww=Jw+w2+. . +w leads to a maximization of a marg.
Becausesqri(f )is a monotonic function, its minimization is equivalent
a minimization off .

Consequently, a minimization of norw/||| equals a minimization of

WIW =w;% + W2 + ... + W2
and this leads to a maximization of a manfgin



Thus the problem to solve is:
minimize

J=wiw = || wf

subject to constraints

y[wix. +b] =1

and this i1s a classic QP problem with constraints
that ends Iin forming and solving of a primal and/or
dual Lagrangian.



Thus the problem to solve is:
minimize

Margin J:WTW: HWHZ
maximization!

subject to constraints

Correct yi[WT Xi + b] > 1
classification!

and this i1s a classic QP problem with constraints
that ends Iin forming and solving of a primal and/or
dual Lagrangian.



2) Linear Soft Margin Classifier forOverlapping Classes

I
Now one minimizes:] (W,E):%WTW+C(Z &Y

st.  wix,+b=>+1-¢, fory, =

WX, +b<-1 +¢, fory = -1.
The problem is no longer convex and the
point of the primal Lagrangiab,(w, b, &,
Lagrange multipliers. Again, we should find eptimal saddle pointw,,
b, ¢, Q, B,) because the Lagrangidn has to beminimizedwith

- = The solution is &yperplane again No
O o perfect separation however!
7~
[ See in the book the detalls of the solutic



However, the hypeplanescannot be the solutions when

the decision boundaries are nonlinear.

Nonlinear SV classification

I I I I I U
Feature X,
4 O B
3 \///___.__) I:::::I B
RN | Class 2
\\ ' y=-1
\ /

2 O < >//

—— \ -

N\
N\
N\
N\
N
1 \ 1
N\
N\
N
N\
N\
N

0 | ! ! N

2 3
Feature Xx;



Now, the SVM should be constructed by

/) mapping input vectors nonlinearly
Into a high dimensional feature space and,

i) by constructing the OCSH In the
high dimensional feature space.



Let’s show this mapping into feature space on a classic
XOR (nonlinearly separable) problem!

Many differentnonlinear discriminant functions that separate 1-s fromn
0-s can be drawn in a feature plane. Suppose, the following one

f(X) =X+ % -2 XX, - 1/3, X3= XX,, f(X) =X, +X%,-2%-1/3
15 - fl l r) O
. 1 . OO
0.5 f>0
o0 % O o:

f 0

0.5 ' ' -
0.5 0 0.5 1 15




The last plane,in a 3-dimensional feature spacgewill be produced by
the following NN structure.

LAYERS
INPUT HIDDEN OUTPUT

u
X3 = +1 constant input, bias



SVMs arise from mapping input vectors x = [x; X, ... X,] into
feature vectors z = ®P(x).

Second order polynomial
hypersurface d(x) in input space

‘_\_
A\ 4

Mapping z Hyperplane in a feature
= ®(x) space F:dz)=wTz+b

<

A\ 4

__________________’____

d(% Ir=sign(d(x))




Now, we apply akernel trick’.

One basic idea Iin designing nonlinear SV machines is to map |
vectorsx [/ [J" into vectorsz of a higher dimensiondéature spacé(z)
= @(x) whered represents mappingi" - [ and to

solve a linear classification problem in this feature space

X 00" - 2(x) = [0(X), %GX), . .., 3@ 00
The solution for an indicator functiop(x) = signv'z(x) + b), which is a

linear classifier in a feature spa€Ee will create anonlinear separating
hypersurface in the original input space given by

E(X) =sign(H a2’ (9 A%) +b)
K(Xi, X)) =7z = dT(X)D(X;).

Note that &ernel functiorK(x;, X;) Is a function in input space.



Kernel functions Type of classifier

K(X, X)) = [(x"x) + 1] Polynomial of degred
Lrix=x ) T s (x=x. .

K(x,x.)=e 20T e Gaussian RBF

K(X, xi) = tanh[&'X) + b]* Multilayer perceptron

*only for certain values of b

The learning procedure is the same as the construction of a ‘hard’
'soft” margin classifier irk-space previously.
Now, irnz-space, the dual Lagrangian that should be maximizec

Ly(a) = or,



and the constraints are
a, =0, 1 =1,

In a more general case, because of noise or generic class’ features
will be an overlapping of training daoints. Nothing but constraints
change as for the soft margin classifier above. Timgsnonlinear ‘soft’
margin classifierwill be the solution of the quadratic optimizatio
problem given above subject to constraints

C=a =0, 1=1,1 and

The decision hypersurface is given by

d(x):i ya, KX, X )+b

We see that the final structure of the SVM is equal to the NN model.
In essence it is a weighted linear combination of some kernel (b:
functions. We’'ll show thighyper)surfaces in simulations later.



Regression by SVMs

Initially developed for solving classification problems, SV technique
can be successfully applied in regression, i.e., for a functional
approximation problemducker et al, (1997), Vapnik et al, (19%.7)

Unlike pattern recognition problems (where the desired outpate
discrete values e.g., Booldahere we deal witreal valuedfunctions

Now, the general regression learning problem is set as follows;

the learning machine is givénraining data from which it attempts to
learn the input-output relationship (dependency, mapping or functio

f(x).

A training data seD = {[x(i), y(i))] O LJ" x [J,1 = 1,...]} consists ofl
pairs &, Y1), (X5, ¥s), ---, X, y;), where the inputs aren-dimensional
vectorsx [ [/ " and system responsgs] [/, are continuous valueslhe

SVM considers approxihfnating functions of the form

fix, w) =) Widi(x)



Vapnik introduced a more general error (loss) function -
the so-called-insensitivity loss function

0
|y 'f(X’W)JZJ

ly -T&,w)|-£,

ifly-f(x,w)ke &

otherwise.

Thus, the loss is equal to O if the difference between the predigieu)
and the measured value is less tlanvapnik's g-insensitivity loss
function defines ane tube aroundf(x, w). If the predicted value jis
within the tube the loss (error, cost) is zero. For all other predicted p«
outside the tube, the loss equals the magnitude of the difference bef
the predicted Va!.lée and the radiysf ethe tubeSee thﬂe next figare.

y - 1 Wy - fx, w) -y - fix, w)

a) quadratic (L, norm) b) absolute error (least modulus, L, norm)

S

€ L

C) &inse

nsitivity



y f(X, W) yl //
Measured

Predicted f(x, w)
2~ solid line

The parameters used in (1-dimensional) support vector regression



Now, minimizing riskR equals

:E||w|r+ Ay .E+3 €

and the constraints are,

Y, —WTX, -b< e+, =11
WTX|+b y, < €+ &, 1= 1,1,
¢ 20 1= 1,1,
&=20 =1,

where ¢ and & are slack variables shown in previous figure f
measurement&bove’ and ‘below’ an e-tube respectively. Both slack
variables are positive values. Lagrange multipliers (that will
introduced during the minimizatiom) anda;,” corresponding tg andé”
will be nonzero values for training points ‘above’ and ‘below’sanbe
respectively. Because no training data can be on both sides of the
either a, or a;” will be nonzero. For data points inside the tube, b
multipliers will be equal to zero.



Similar to procedures applied to SV classifiers, we solve this constra
optimization problem by forming grimal variables Lagrangiah (w, ¢,

&)
L,(w,b,&,E a,a; .6 B )=%WTW+ C(Z::1€+ z:ﬂf -Z::ldi[M'WTXi - b+€+5i:

-Y AW by te+ g [- 3 L(BE +BE)

A primal variables Lagrangiab(w, b, ¢, &', a, o, B, ) has to be
minimizedwith respect to primal variableg, b, £ andé andmaximized
with respect to nonnegatideaGrange multipliersy, a*, S and 3. This
problem can be solved again either ipramal spaceor in adual one.
Below, we consider a solution in a dual space. Applying Karush-Ku
Tucker (KKT) conditions for regression, we withaximize adual
variables Lagrangian la, o)

L(a,a’) = €Y @ +a)+y (@ -a,)y, -

NP

Z (a*u _ai)(a*j —a, ))ﬁTXj

subject to constraints



I *
Zizlai = Zizlai
0<a’<C 1=1,1,
O<a,<C 1=1,1.

Note that dual variables LagrangianL 4(a, a”) is expressed in terms of
LaGrange multipliers a and a* only, and that the size of the problem
with respect to the size of an SV classifier design tasigubled now

There arel2unknown multipliers for linear regression and the Hess
matrix H of the quadratic optimization problem in the case of regress
IS a (2, 21) matrix.

Thestandard quadratic optimization problembove can be expresse
In amatrix notation and formulated as follows:

Maximize

Ly(a) =-0.59™H a + fTa,
subject to constraints above where fdinaar regression

H= X+ 11 F = [6- Y1 €- Yo oo €= Yo EF Y1, €+ Yo oo £+ Yl



More interesting, common and challenging problem is to airmr
solving thenonlinear regression tasksHere, similar as in the case
nonlinear classification, this will be achieved by consider@ngnear
regression hyperplang the so-calledeature space

Thus, we use the same basic idea in designing SV machine
creating a nonlinear regression function.

We map input vectors [/ []" into vectorsz of a higher dimensional
feature spac& (z = ®(x) whered represents mapping/" - [J") and
we solve a linear regression problem in this feature space.

A mapping®(x) is again chosen in advance. Such an approach a
leads to solving a quadratic optimization problem with inequa
constraints in &-space. The solution for argression hyperplane=
wTz(x) + b which is linear in a feature spa€e will createa nonlinear
regressing hypersurface in the original input spdoethe case of
nonlinear regression, after calculation of LaGrange multiplier vector
and a’, we can find an optimal desired weight vector of keenels
expansioras

Wo=a -a



1
and an optimal bials, can be found fromh, =I—Z:=l(yi )

whereg = G w, and the matriXs is a corresponding design matrix of
given RBF kernels.

The best nonlinear regression hyperfunction is given by
z=1(x,w) =Gw +b.

There are few learning parametdarsconstructing SV machines for
regression. The two most relevant Hre insensitivity zonee and the
penalty parameter C that determines the trade-off between the trainin
error and VC dimension of the modBbth parameters should be
chosen by the user.

Generally, an increase in an insensitivity zehas smoothing effects
on modeling highly noisy polluted data. Increase means a reduction
INn requirements on the accuracy of approximation. It decreases the
number of SVs leading to data compression too. See the next figures



One-dimensional support vector regression One-dimensional support vector regression

4 4 ry
3t 3
2 2
y 1 y 1
o); o);
-1f 5h
2 2 0 2 4 4 2 0 2
X X

The influence of a insensitivity zone e on modeling quality . A
nonlinear SVM creates a regression function with Gaussian
kernels and models a highly polluted (25% noise) sinus function
(dashed). 17 measured training data points (plus signs) are used.
Left: e=0.1. 15 SV are chosen (encircled plus signs).
Right: e=0.5. 6 chosen SV produced a much better
regressing function.



Some of the constructive problems:
The SV training works almost perfectly for not too large data basis.

However, wherthe number of data points is large ($a2000)the QP
problem becomes extremely difficult to solve with standard methods.
example, a training set di0,000 examples amounts to a Hessial
matrix H with 2.5*10° (2.5 billion) elements. Using an 8-byte
floating-point representation we need 20,000 Megabytes = 2
Gigabytes of memory(Osuna et al, 1997). This cannot be easily fit ir
memory of present standard computers.

There are three approaches that resolve the QP for large data
Vapnik in (Vapnik, 1999 proposed thehunking methodthat is the
decomposition approacknother decomposition approach is propos
In (Osuna et all, 199). The sequential minimal optimizatiofPlatt,
1997 algorithm is of different character and it seems to be an ‘error
propagation’ for a SVM learning.



There Is an alternative approach in the
calculation of the support vectors presen
In thesection 5.3.4 under the title:

OPTIMAL SUBSET SELECTION BY
LINEAR PROGRAMMING (LP)



OPTIMAL SUBSET SELECTION BY
LINEAR PROGRAMMING (LP)

At the moment, a lot of work on implementing LP approach in
support vectors selection is starting (Smola et all 1998, Bennett
1999, Weston et all 1999, and Graepel et all 1999), although the

early work on LP based classification algorithms dates back to the
mid 1960s (see Mangasarian, 1965).

We (Ph.D. student |. Hadzic + me) recently found that an

analysis of relations between APPROXIMATION and LP

was performed in (Cheney and Goldstein, 1958; Stiefel,
1960 and Rice, 1964).

Independently, we also started with an LP approach.
Others are not lagging behind.



Here we present the LP approach in a regression problem as given in the book

The detailed description of the LP approach in both the regression a
the classification (pattern recognition) tasks can be found in:

Kecman V., Hadzic I., Support Vectors Selection by Linear
Programming, Proceedings of the International Joint Conference on
Neural Networks (IJCNN 2000), Vol. 5, pp. 193-199, Como, lItaly,
2000

The problem is now the following:

Having the measurement pairs y), place the basis function (kerne(s)
at each data points and perform approximation same as in SVM
regression.
However, unlike in QP approach one minimizes thadrm now!



Thus, we do not want to solve the equation below

y=Gw,w="7

(which leads to the interpolation). We rather design a
parsimonious NN containing less neurons than data points.

In other words, we want to solve y = Gw such that || Gw — vy || Is
small for some chosen norm. We reformulate the initial problem
as follows: Find a weight vector

w = arg ||w||,, subject to, || Gw -V ||, < €,

where ¢ defines the maximally allowed error (that is why we used
L., norm) and corresponds to the ¢ - insensitivity zone in SVM.

This constrained optimization problem can be transformed
Into a standard linear programming form as follows.



First, |w|l,= S

p=l|Wp| IS not an LP problem formulation where
we typically minimi

e c’w, and c is some known coefficient vector.

Thus, we use the standard trick by replacing w, and | w, | as

follows,
W, = wt-w
W[ = w* +w

where w* and w are the two non-negative variables.

Second , the constraint is not in a standard formulation either and
It should also be reformulated as follows. Note that
|| Gw -V ||, < € above defines an e-tube inside which should our
approximating function reside.
Such a constraint can be rewritten as,

y-el<sGw<sy+e¢l

where 1 is a (P, 1) column vector filled with ones.



Finally, this problem can be rewritten in a standard LP matrix
notation,

I_II_IEI
=

T+

min cTw = mln[ll 111...1]

P columns Pcolumns

L |

20T !

I_II_ILé

subject to,

G -GOw
I GHw i Hy+el

n

w >0w >0




Despite the lack of a comparative analysis between QP an LP
approaches yet, our first simulational results show that the
LP subset selection may be more than a good alternative to
the QP based algorithms when faced with a huge training
data sets.

Saying that we primarily refer to the following possible
benefits of applying LP based learning:

* LP algorithms are faster and more robust than QP ones,

* they tend to minimize number of weights (meaning SV)
chosen,

* because of the latter, LP share many good properties with
an established statistical technique known as Basis
Pursuit and finally,

* they naturally incorporate the use of kernels for creation of
nonlinear separation and regression hypersurfaces in
pattern recognition or function approximation.



Let us conclude the presentation of SVMs by summarizing
the basic constructive steps that lead to SV machine:

»selection of the kernel function that determines the shape of
the decision and regression function in classification and
regression problems respectively,

»selection of the ‘shape’, i.e., ‘'smoothing’ parameter in the
kernel function (for example, polynomial degree and variance
of the Gaussian RBF for polynomials and RBF kernels
respectively),

»choice of the penalty factorC and selectionof the desired
accuracy by defining the insensitivity zonee,

»solution of the QP (or an LP) problem inl and 2 variables
In the case of classification and regression problems
respectively.



Let us conclude the comparisons between the SVMs and NNs

»both the NNs and SVMs learn from experimental data,

»both the NNs and SVMs are universal approximators in the
sense that they can approximate any function to any desirec
degree of accuracy,

»after the learning they are given with the same
mathematical model and they can be presented graphically
with the same so-called NN’s graph

»they differ by the learning method used. While NNs
typically use either EBP (or some more sophisticated gradient
descent algorithm) or some other linear algebra based
approach, the SVMs learn by solving the QP or LP problem.



