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Slides accompanying The MIT Press‘ book: Learning and Soft Computing



The slides shown here are developed around the basic notion of

Learning from Experimental Data (samples, observations, records,
measurements, patterns, examples) by SVMs and NNs

as presented in the book

LEARNING AND SOFT COMPUTING
Support Vector Machines, Neural Networks and Fuzzy Logic Models

Author:Vojislav KECMAN
The MIT Press, Cambridge, MA, 2001

ISBN 0-262-11255-8
608 pp., 268 illustrations, 47 examples, 155 problems

They are intended to support both the instructors  in the development and delivery
of course content and the learners  in acquiring the ideas and techniques

presented in the book in a more pleasant way than just reading.



T O P I C S in INTRODUCTARY PART

•SVMs & NNs as the BLACK box modeling, and

•FLMs as the WHITE box modeling

•Motivation and basics. Graphic presentation of
any approximation or classification scheme leads

to the so-called NNs and/or SVMs

•Curve and surface fittings, multivariate function
approximation, nonlinear optimization and NN
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R1: IF the speed is low AND
the distance is small

THEN the force on brake should be small
R2: IF the speed is medium
AND the distance is small

THEN the force on brake should be big
R3: IF the speed is high

AND the distance is small
THEN the force on brake should be very big

At many instances we do have both  some knowledge and some data.

This is the most common gray box situation covered by the paradigm of
Neuro-Fuzzy or Fuzzy-Neuro models.

If we do not have any prior knowledge AND we do not have any
measurements (by all accounts very hopeless situation indeed) it may be

hard to expect or believe that the problem at hand may be approached
and solved easily. This is a no-color box situation.

x o

  NNs & SVMs FL Models

Black-Box

No previous knowledge, but there
are measurements, observations,

records, data.

White-Box
Structured knowledge

(experience, expertise or heuristics).
IF - THEN  rules are the most typical
examples of the structured knowledge.

Behind FLM stands the idea of
embedding human knowledge into

workable algorithms.
Behind NN stands the idea of learning

from the data.

Example:Controlling the distance between
two cars.
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BUT, what if we want to
learn the frequencies?

!!!       NONLINEAR
LEARNING

PROBLEM     !!!

1

2

4

n

Classical approximation techniques in NN graphical appearance
FOURIER SERIES

AMPLITUDES and PHASES of sine (cosine) waves are ?, but
frequencies are known because

Mr Joseph Fourier has selected frequencies  for us -> they are
INTEGER multiplies of some pre-selected base frequency.

And the problem is LINEAR!!! It is ‘same’ with
POLYNOMIALS



-2 -1 0 1 2 3 4 5
0

50

100

150

200

250

Weight  w = [A; w]

 C
os

t  
fu

m
ct

io
n 

 J
 

The cost function J dependence upon A (dashed) and w (solid)

Now, we want to find Fourier ‘ser ies’  m odel y = w2si n(w1x) of the under lyi ng

dependency y = 2.5 si n(1.5x), known to us but not to the learning m achine (algorithm ).

x
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W e know t hat t he f unct ion i s si nus but  we don’ t know i ts f requency and am plitude. Thus,  by usi ng t he
training data set  { x, d},  we want to m odel this syst em  with the NN m odel consi st ing of  a si ngl e neuron in HL
(havi ng si nus as an act ivat ion funct ion) as given above.

A = w2

ZZZZ = w1

J = sum(e2) = sum(d - o)2

sum(d -w2si n(w1x) )2
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Now, we want to find Fourier ‘ser ies’  m odel y = w2si n(w1x) of the under lyi ng

dependency y = 2.5 si n(1.5x).
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(havi ng si nus as an act ivat ion funct ion) as given above.

J = sum(e2) = sum(d - o)2
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POLYNOMIAL SERIES
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V
is prescribed

The following
approximation scheme is a
NOVEL ONE called NN
or RBF network here.

With a prescribed
(integer) exponents

this is again LINEAR
APPROXIMATION
SCHEME. Linear in
terms of parameters
to learn and not in

terms of the resulting
approximation

function. This one is
NL function for i > 1.



Approximation of
some

 NL 1D function by

Gaussian

Radial Basis Function

 (RBF)

In 1-D case forget
these two inputs. They
are here just to denote
that the basic structure
of the NN is the same

for ANY-
DIMENSIONAL

INPUT
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APPROXIMATION OF SOME 2D NONLINEAR FCTN BY GAUSSIAN RBF NN

Approximation of some NL 2D function by

Gaussian Radial Basis Function (RBF)
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Data
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APPROXIMATION OF SOME 2D NONLINEAR FCTN BY GAUSSIAN RBF NN

Approximation of some NL 2D function by

Gaussian Radial Basis Functions (RBF)

For FIXED Gaussian RBFs a LEARNING FROM DATA is LINEAR
PROBLEM. If the Centers and Covariance matrices are the subjects of

learning, problem becomes NONLINEAR.



The learning machine that uses data to find the
APPROXIMATING FUNCTION (in regression

problems) or the SEPARATION BOUNDARY (in
classification, pattern recognition problems), is

the same in high-dimensional situations.

It is either the so-called SVM or the NN.

WHAT are DIFFERENCES and SIMILARITIES?



The learning machine that uses data to find the
APPROXIMATING FUNCTION (in regression

problems) or the SEPARATION BOUNDARY (in
classification, pattern recognition problems), is

the same in high-dimensional situations.

It is either the so-called SVM or the NN.

WHAT are DIFFERENCES and SIMILARITIES?

WHATCH CAREFULLY NOW !!!
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AND AGAIN !! !
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and, this is a Support Vector Machine.

wj j j jj

J ϕ ( , , )x c Σ
=∑ 1

F(x) =

There is no difference in

representational capacity, i.e., in a
structure.

However, there is an important
difference in LEARNING.



Therefore,

let’s talk about basics of

the learning from data
first.

Note that you may find different names for the L from D:

identification, estimation,
regression, classification,

pattern recognition,  function
approximation,  curve or surface

fitting etc.



All these tasks used to be
solved previously.

Thus, THERE IS THE QUESTION:

Is there anything new in
respect to the classical

statistical inference?



The classical regression and (Bayesian) classification statistical
techniques are based on the very strict assumption that probability

distribution models or probability-density functionsprobability-density functions are known.
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The classical regression and (Bayesian) classification statistical
techniques are based on the very strict assumption that probability

distribution models or probability-density functionsprobability-density functions are known.

Classical statistical inference is based on the
following three fundamental assumptions:

*Data can be modeled by a set of linear in parameter
functions; this is a foundation of a parametric paradigm in
learning from experimental data.
*In the most of real-life problems, a stochastic component of
data is the normal probability distribution law, i.e., the
underlying joint probability distribution is Gaussian.
*Due to the second assumption, the induction paradigm for
parameter estimation is the maximum likelihood method that
is reduced to the minimization of the sum-of-errors-squares
cost function in most engineering applications.



All three assumptions on which the classical statistical paradigm
relied, turned out to be inappropriate for many contemporary real-
life problems (Vapnik, 1998) due to the facts that:
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All three assumptions on which the classical statistical paradigm
relied, turned out to be inappropriate for many contemporary real-
life problems (Vapnik, 1998) due to the facts that:

*modern problems are high-dimensional, and if the underlying
mapping is not very smooth the linear paradigm needs an
exponentially increasing number of terms with an increasing
dimensionality of the input space X, i.e., with an increase in the
number of independent variables. This is known as ‘the curse of
dimensionality’,

*the underlying real-life data generation laws may typically
be very far from the normal distribution  and a model-builder
must consider this difference in order to construct an
effective learning algorithm,

*from the first two objections it follows that the maximum likelihood
estimator (and consequently the sum-of-error-squares cost function)
should be replaced by a new induction paradigm that is uniformly
better, in order to model non-Gaussian distributions.



There is a real life fact

the probability-density functionsprobability-density functions are TOTALLYTOTALLY unknown,
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HOW TO PERFORM a distribution-free
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There is a real life fact

the probability-density functionsprobability-density functions are TOTALLYTOTALLY unknown,

and there is the question

HOW TO PERFORM a distribution-free

REGRESSIONREGRESSION or CLASSIFICATIONCLASSIFICATION ?

Mostly, all we have are recorded EXPERIMENTAL DATAEXPERIMENTAL DATA  (training
patterns, samples, observations, records, examples) that are usually

high-dimensional and scarce in present day applications.

High-dimensional spaces seem to be terrifyingly emptyterrifyingly empty  and
our learning algorithms (i.e., machines) should be able to operate in such

spaces and to learn from sparse datalearn from sparse data.
There is an old saying that redundancy provides knowledge. Stated

simpler – we expect that the more data pairs we have the better results
will be. These essentials are depicted in the next figure.



  Error Small sample  Medium sample      Large sample

Data size       l

final error

noisy data set
noiseless data set

Dependency of the modeling error on the training data set size.



Dependency of the modeling error on the training data set size.

GlivenkoGlivenko --CantelliCantelli --Kolmogorov Kolmogorov results.results.
GlivenkoGlivenko --CantelliCantelli  theorem states that:

Distribution function P emp(x) →→→→ P(x)
as the number of data l →→→→ ∞∞∞∞ .

However, for both regression and classification we need
probability density functions p(x), i.e., p(x|ωωωω) and not a

distribution P (x).

  Error   Small sample  Medium sample      Large sample

Data size       l

final error

noisy data set
noiseless data set



Therefore, there is a question:

whether p emp(x) →→→→ p(x)
as the number of data l →→→→ ∞∞∞∞ .

Answer is both not straight and not guaranteed,

despite the fact that

∫∫∫∫ p(x)dx = P(x).
(Analogy with a classic problem Ax = y, x = A-1y)!



Therefore, there is a question:

whether p emp(x) →→→→ p(x)
as the number of data l →→→→ ∞∞∞∞ .

Answer is both not straight and not guaranteed,

despite the fact that

∫∫∫∫ p(x)dx = P(x).

What is needed here is the theory of
UNIFORM CONVERGENCE of the set of functionsthe set of functions

implemented by a model, i.e., learning machineimplemented by a model, i.e., learning machine
(Vapnik, Chervonenkis, 1960-70ties).

We, will skip a discussion about this part here.

Skip it, but not forget it.

(Analogy with a classic problem Ax = y, x = A-1y)!



Here, we discuss nonlinear and ’nonparametric’  models
exemplified by NNs and SVMs.

Nonlinear means two things:

1) our model class will be not restricted to linear input-output
maps and,

2) the dependence of the cost function that measures the
goodness of our model, will be nonlinearnonlinear in respect to the

unknown parameters.

In passing it may be noted that the second nonlinearity is the
part of modeling that causes most of the problems.



‘Nonparametric’  does not mean that our models do not have
parameters at all. On contrary,

their learning (meaning selection, identification, estimation,
fitting or tuning) is the crucial issue here.



‘Nonparametric’  does not mean that our models do not have
parameters at all. On contrary,

their learning (meaning selection, identification, estimation,
fitting or tuning) is the crucial issue here.

However, unlike in classical statistical inference, now  they
are not predefined but rather their number depends on the

training data used.

In other words, parameters that define the capacity of the
model are data driven in such a way as to match the model
capacity to the data complexity. This is a basic paradigm of

the structural risk minimization (SRM) introduced by Vapnik
and Chervonenkis and their coworkers.



The main characteristics
of all modern problems
is the mapping between
the  high-dimensional

spaces.
Let’s see the following pattern recognition (classification) example!



Gender recognition problem: These two faces are female or male?

F or
M?

M or
F?



Gender recognition problem: These two faces are female or male?

F or
M?

M or
F?

There must be
something in the
geometry of our
faces. Here, 18
input variables,
features, were

chosen!

Problem from

Brunelli & Poggio ,
1993.



Just  a f ew wor ds about  t he dat a set  si ze and di m ensional ity. Appr oxi m ation and
cl assi ficat ion ar e ‘ sam e’ f or any di m ensional ity of  t he i nput  space.  Nothing ( !) but
si ze changes.  But  t he change i s DRASTIC. H i gh di m ensional ity m eans bot h an
EXPLOSION in a num ber OF PARAM ETERS to learn and a SPARSE training data
set .

H igh dim ensional  spaces seem  to be terrifyi ngl y em ptyterrifyi ngl y em pty.
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High dim ensional  spaces are terrifyi ngl y em ptyterrifyi ngl y em pty.

M any different rem edies proposed to resol ve this

CURSE of D IM ENSIONALITY.

One of proposal s to resol ve it is to utilize the BLESSING of SM OOTHNES
REGULARIZATION THEORY            RBF which cont ain cl assi cal

spl ines.



CURSE of D IM ENSIONALITY and SPARSITY OF DATA.

The newest  prom isi ng tool  FOR W ORKING UNDER THESE CONSTRAINTS are
the SUPPORT VECTOR M ACHINES based on the STATISTICAL LEARNING

THEORY (VLADIM IR VAPNIK and ALEKSEI CHERVONENKIS).

W HAT IS THE cont em porary BASIC LEARNING PROBLEM ???

LEARN THE DEPENDENCY (FUNCTION, M APPING) from
SPARSE DATA, under  NOISE, in HIGH DIM ENSIONAL SPACE!

Recal l - the redundancy provi des the knowledge!

A  lot of data - ‘easy’  probl em .



CURSE of D IM ENSIONALITY and SPARSITY OF DATA.

The newest  prom isi ng tool  FOR W ORKING UNDER THESE CONSTRAINTS are
the SUPPORT VECTOR M ACHINES based on the STATISTICAL LEARNING

THEORY (VLADIM IR VAPNIK and ALEKSEI CHERVONENKIS).

W HAT IS THE cont em porary BASIC LEARNING PROBLEM ???

LEARN THE DEPENDENCY (FUNCTION, M APPING) from
SPARSE DATA, under  NOISE, in HIGH DIM ENSIONAL SPACE!

Recal l - the redundancy provi des the knowledge!

A  lot of data - ‘easy’  probl em .

LET’S  EXEM PLIFY  THE  INFLUENCE  OF  A   DATA  SET  SIZE
ON  THE  SIM PLEST  RECOGNITION  PROBLEM

BINARY CLASSIFICATION,  i.e.,  D ICHOTOM IZATION.



CLASSIFICATION or PATTERN RECOGNITITON EXAM PLE
Assum e - Norm ally distributed cl asses,  sam e covar iance
m atrices.  Solution is ‘easy’  - deci si on boundar y is linear
and def ined by param eter w = X* D when there is 
plent y of data (inf ini ty). X* denot es the PSEUDOINVERSE.

 d1 = +1

 x1

 x2

 d2 = -1



CLASSIFICATION or PATTERN RECOGNITITON EXAM PLE
Assum e - Norm ally distributed cl asses,  sam e covar iance
m atrices.  Solution is ‘easy’  - deci si on boundar y is linear
and def ined by param eter w = X* D when there is 
plent y of data (inf ini ty). X* denot es the PSEUDOINVERSE.

 d1 = +1

 x1

 x2

 d2 = -1
Note that this

solution follows
from the last two
assumptions in

classical inference!

Gaussian data and
minimization of the

sum-of-errors-
squares!



However, for a sm all sam ple -

Solution def ined by w = X* D is NO  LO NG ER G O O D O NE !!!

Because,  for this data set  we w ill obtain this separat ion line,



and,
for anot her data set  we w ill obtain anot her separat ion line.
Again,  for sm all sam ple - 
a sol ution def ined by w = X* D is NO  LO NG ER G O O D O NE !!!



W hat is com m on for both separat ion lines the red and the blue one.

Both have a SM ALL M ARG IN.

W H AT’S W RO NG  W ITH  SM ALL M ARG IN?

It  is very likel y that  the new exam ples (     ,      ) w ill be wrongl y cl assi fied.

H owever,  the quest ion is

 how to DEFINE and FIND

the

O PTIM AL SEPARATIO N
H YPERPLANE

G IVEN (scarce)

DATA SAM PLES ???

 



The STATISTICAL LEARNING  TH EO RY IS DEVELO PED TO  SO LVE 

PRO BLEM S of FINDING  TH E O PTIM AL SEPARATIO N H YPERPLANE 

for sm all sam ples.



O PTIM AL
SEPARATIO N
H YPERPLANE

is the one that  has
the

LARG EST
M ARG IN

on given

DATA SET

The STATISTICAL LEARNING  TH EO RY IS DEVELO PED TO  SO LVE 

PRO BLEM S of FINDING  TH E O PTIM AL SEPARATIO N H YPERPLANE 

for sm all sam ples.



Thus, let’s show a little more formally,

the constructive part of

the statistical learning theory.

Vapnik and Chervonenkis introduced

a nested set of hypothesis (approximating or
decision) functions.

Nested set means that

H1  ⊂⊂⊂⊂    H2  ⊂⊂⊂⊂ … ⊂⊂⊂⊂ Hn-1  ⊂⊂⊂⊂      Hn  ⊂ …



Before presenting the basic ideas, clarifications regarding
terminology  is highly desired because

a lot of confusion is caused by a non-unified terminology :
Approximation, or training, error eapp ~ Empirical risk ~ Bias,

Estimation error eest ~ Variance ~ Confidence on the training error ~ VC
confidence interval,

Generalization (true, expected) error egen ~ Bound on test error ~
Guaranteed, or true, risk,

H1⊂⊂⊂⊂    H2  ⊂⊂⊂⊂ … ⊂⊂⊂⊂ Hn-1⊂⊂⊂⊂      Hn  ⊂⊂⊂⊂ … T

 fn
 fo

Approximation, or training, error e app ~ Bias

Estimation error eest ~ Variance
~ Confidence

Generalization, or true, error egen
~ Bound on test error

~ Guaranteed, or true, risk

h ~ n, capacity

Error or
Risk  underfitting            overfitting

Hypothesis space of increasing complexity        Target space

 fn,l



Another terminological Rashomons are the concepts of

Decision functions and/or hyperplanes and/or hypersurfaces,

Discriminant functions and/or hyperplanes and/or hypersurfaces,

Decision boundaries, (hyperplanes, hypersurfaces)

Separation lines, functions and/or hyperplanes and/or hypersurfaces,

Input space and feature space used to be the same
and then

SVM developers introduced feature space  as the hidden layer
or imaginary  z-space
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Another terminological Rashomons are the concepts of

Decision functions and/or hyperplanes and/or hypersurfaces,

Discriminant functions and/or hyperplanes and/or hypersurfaces,

Decision boundaries, (hyperplanes, hypersurfaces)

Separation lines, functions and/or hyperplanes and/or hypersurfaces,

Input space and feature space used to be the same
and then

SVM developers introduced feature space  as the hidden layer
or imaginary  z-space

The final contributing confusing terminology comes with an
indicator function that is basically thresholding function.

And we must not forget a CANONICAL HYPERPLANE !



Desired value y     Indicator function iF(x, w , b) = sign(d)

Input x2

Input x1

The decision boundary or
separating line is an intersec-
tion of d(x, w, b) and an input
plane (x1, x2); d = wTx +b = 0

+1

0

-1

The optimal separating hyperplane d(x, w, b)
is an argument of indicator function

d(x, w, b)

Stars denote support vectors

  Input plane
(x1, x2)
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Therefore, in other to reduce a level of confusion at the first-time-
readers, i.e., beginners, in the world of SVM, we developed the

LEARNSC software that should elucidate all these mathematical
objects, their relations and the spaces they are living in.

Thus, the software that can be downloaded from the same site will
show the kind of figures below and a little more complex ones.
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That’s it! Let’s fly hyperspaces!!!



However, before taking-off, a few more ‘similarities’

between NNs and SVMs follow

Classical multilayer perceptron

  Regularization (RBF) NN

Support Vector Machines

In the last expression the SRM principle uses the VC dimension h
(defining model capacity) as a controlling parameter for minimizing

the generalization error E (i.e., risk R).

E d fi i

Closeness to datai

P

= −
=
∑ ( ( , ))x wø ÷õõ öõõ

2
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Closeness to data Smoothnessi
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Capacity of a machine
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There are two basic, constructive approaches to the minimization of
the right hand side of previous equations (Vapnik, 1995 and 1998):

-choose an appropriate structure (order of polynomials,
number of HL neurons, number of rules in the FL model)
and, keeping the confidence interval fixed in this way,
minimize the training error (i.e., empirical risk), or

-keep the value of the training error fixed (equal to zero or
equal to some acceptable level) and minimize the confidence
interval.

Classical NNs implement the first approach (or some of its
sophisticated variants) and SVMs implement the second strategy.

In both cases the resulting model should resolve the trade-off
between under-fitting and over-fitting the training data.

The final model structure (order) should ideally
match the learning machines capacitylearning machines capacity with training data complexitytraining data complexity.



O.K.

Let us do some more
formal,

meaning,

mathematical analysis of
SVMs learning!



The presentation will follow an idea of a gentle introductiongentle introduction, i.e., of a
gradual proceedinggradual proceeding from the ‘simple’ cases to the more complex and

involved ones!

1) Linear Maximal Margin Classifier for Linearly

    Separable Data - no samples overlapping.

2) Linear Soft Margin Classifier

    for Overlapping Classes.

3) Nonlinear Classifier.

4) Regression by SV Machines that can be either linear or nonlinear!



1) Linear Maximal Margin Classifier for Linearly Separable Data

     Binary classification - no samples overlapping

Given some training data

(x1, y1), . . ., (xl, yl),  yi ∈ {-1, +1}

find the function f(x, w0) ∈ f(x, w) which best approximates the
unknown discriminant (separation) function y = f(x).

Linearly separable data can
be separated by in infinite

number of linear
hyperplanes that can be

written as

f(x, w) = wTx +  b

The problem is: find the
optimal separating

hyperplane



1) Optimal separating hyperplane is the one with

MAXIMAL MARGIN !

This hyperplane is uniquely determined by the vectors on the margin

the support vectors!

MARGIN IS DEFINED by
w as follows:

(Vapnik, Chervonenkis ‘74)

2
M =

w

M



The optimal canonical separating hyperplane (OCSH), i.e., a separating
hyperplane with the largest margin (defined by M = 2 / ||w||) specifies
support vectors, i.e., training data points closest to it, which satisfy
yj[wTxj + b] ≡≡≡≡ 1, j = 1, NSV. At the same time, the OCSH must separate
data correctly, i.e., it should satisfy inequalities

yi[wTxi + b] ≥ 1, i = 1, l

where l denotes a number of training data and NSV stands for a number of
SV.

Note that maximization of M means a minimization of ||w||.
Minimization of a norm of a hyperplane normal weight vector ||w|| =

leads to a maximization of a margin M.
Because  sqrt(f )is a monotonic function, its minimization is equivalent to
a minimization of f .

Consequently, a minimization of norm ||w|| equals a minimization of

wTw  = w1
2 + w2

2 + … + wn
2

and this leads to a maximization of a margin M.

2 2 2
1 2 ...T

nw w w= + + +w w



Thus the problem to solve is:

minimize

J = wT w = || w ||2

subject to constraints

yi[wT xi + b] ≥ 1

and this is a classic QP problem with constraints
that ends in forming and solving of a primal and/or

dual Lagrangian.



Thus the problem to solve is:

minimize

J = wT w = || w ||2

subject to constraints

yi[wT xi + b] ≥ 1

and this is a classic QP problem with constraints
that ends in forming and solving of a primal and/or

dual Lagrangian.

MarginMargin

maximization!maximization!

CorrectCorrect

classification!classification!



2) Linear Soft Margin Classifier for Overlapping Classes

Now one minimizes:

s.t. wTxi + b ≥ +1 - ξi, for yi = +1,
wTxi + b ≤ -1 + ξi, for yi = -1.

The problem is no longer convex and the solution is given by the saddle
point of the primal Lagrangian Lp(w, b, ξξξξ, αααα, ββββ) where αi and βi are the
Lagrange multipliers. Again, we should find an optimal saddle point (wo,
bo, ξξξξo, ααααo, ββββo) because the Lagrangian Lp has to be minimized with
respect to w, b and ξξξξ, and maximized with respect to nonnegative αi and
βi.

1

1
( , ) ( )

2

l
T k

i
i

J Cξ ξ
=

= + ∑w w w

The solution is a hyperplane again. No
perfect separation however!

See in the book the details of the solution!



0 1 2 3 4 5

0

1

2

3

4

5

Feature x1

Feature x2

Nonlinear SV classification

Class 1
y = +1

Class 2
y = -1

However, the hyperplanes cannot be the solutions when

the decision boundaries are nonlinear.



Now, the SVM should be constructed by

i) mapping input vectors nonlinearly
into a high dimensional feature space and,

ii) by constructing the OCSH in the
high dimensional feature space.



Let’s show this mapping into feature space on a classic
XOR (nonlinearly separable) problem!

Many different nonlinear discriminant functions that separate 1-s from
0-s can be drawn in a feature plane. Suppose, the following one

f(x) = x1 + x2 -2 x1x2 - 1/3 ,    x3 =  x1x2 ,       f(x) = x1 + x2 - 2x3 - 1/3

1 0

0 1

f

f

f  >  0

-0.5 0 0.5 1 1.5
-0.5
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1

1.5
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x2

x3 0

1

0
1



x3 = +1  constant input, bias

1

1

-1/3

x1

x2

1

1

-1.5

x3
o

LAYERS
   INPUT  HIDDEN OUTPUT

-2

The last plane, in a 3-dimensional feature space, will be produced by
the following NN structure.

 f
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Hyperplane in a feature
space F: d(z) = wTz + b

Second order polynomial
hypersurface d(x) in input space

Mapping z
= ΦΦΦΦ(x)

iF=sign(d(x))

SVMs arise from mapping input vectors x = [x1 x2 … xn]T into
feature vectors z = ΦΦΦΦ(x).



Now, we apply a ‘kernel trick’.

One basic idea in designing nonlinear SV machines is to map input
vectors x ∈ ℜℜℜℜ n into vectors z of a higher dimensional feature space F(z)
= ΦΦΦΦ(x) where ΦΦΦΦ represents mapping: ℜℜℜℜ n → ℜℜℜℜ f  and to

solve a linear classification problem in this feature space

x ∈ ℜℜℜℜ n →  z(x) = [a1φ1(x), a2φ2(x), . . ., afφf(x)]T ∈ ℜℜℜℜ f

The solution for an indicator function iF(x) = sign(wTz(x) + b), which is a
linear classifier in a feature space F, will create a nonlinear separating
hypersurface in the original input space given by

       iF(x) = sign

K(xi, xj) = zi
Tzj = ΦΦΦΦT(xi)ΦΦΦΦ(xj).

Note that a kernel function K(xi, xj) is a function in input space.

( ( ) ( ) )α i i
T

i
i

l

y bz x z x
=
∑ +

1



Kernel functions Type of classifier

K(x, xi) = [(xTxi) + 1]d                       Polynomial of degree d

Gaussian RBF

K(x, xi) = tanh[(xTxi) + b]*        Multilayer perceptron
                                                                                 *only for certain values of b

The learning procedure is the same as the construction of a ‘hard’ and
’soft’ margin classifier in x-space previously.
           Now, in z-space, the dual Lagrangian that should be maximized is

Ld(α) =                 or,

Ld(α) =

K ei

i
T

i
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d y K bi i i
i

l

( ) ( , )x x x= +
=
∑ α

1

and the constraints are

αi ≥ 0, i = 1, l

In a more general case, because of noise or generic class’ features, there
will be an overlapping of training data points. Nothing but constraints
change as for the soft margin classifier above. Thus, the nonlinear ‘soft’
margin classifier will be the solution of the quadratic optimization
problem given above subject to constraints

C ≥ αi ≥ 0, i = 1, l and

The decision hypersurface is given by

We see that the final structure of the SVM is equal to the NN model.
In essence it is a weighted linear combination of some kernel (basis)
functions. We’ll show this (hyper)surfaces in simulations later.

α i i
i

l

y =
=
∑ 0

1



Regression by SVMs
Initially developed for solving classification problems, SV techniques

can be successfully applied in regression, i.e., for a functional
approximation problems (Drucker et al, (1997), Vapnik et al, (1997)).

Unlike pattern recognition problems (where the desired outputs yi are
discrete values e.g., Boolean), here we deal with real valued functions.

Now, the general regression learning problem is set as follows;

 the learning machine is given l training data from which it attempts to
learn the input-output relationship (dependency, mapping or function)

f(x).

A training data set D = {[ x(i), y(i)] ∈ ℜ n × ℜ, i = 1,...,l} consists of l
pairs (x1, y1), (x2, y2), …, (xl, yl), where the inputs x are n-dimensional

vectors x ∈ ℜ n and system responses y ∈ ℜ, are continuous values.  The
SVM considers approximating functions of the form

   f(x, w) )(w
N

i
ii∑=

1

xϕ



a) quadratic (L2 norm)          b) absolute error (least modulus, L1 norm)                   c) ε-insensitivity

                e                  e       e

 y - f(x, w)y - f(x, w)    y - f(x, w)

ε

Vapnik introduced a more general error (loss) function -
the so-called εεεε-insensitivity loss function

Thus, the loss is equal to 0 if the difference between the predicted f(x, w)
and the measured value is less than ε. Vapnik’s ε-insensitivity loss
function defines an εεεε  tube around f(x, w). If the predicted value is
within the tube the loss (error, cost) is zero. For all other predicted points
outside the tube, the loss equals the magnitude of the difference between
the predicted value and the radius ε of the tube. See the next figure.

|   -  ( ,  ) |
if |   -  ( ,  ) |

|   -  ( ,  ) | - , otherwise.
y f

y f

y f
x w

x w

x wε

ε
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x

 y       f(x, w)

Predicted f(x, w)
solid line

ε
ε

Measured

Measured

ξi

ξj
*

 yi

 yj

The parameters used in (1-dimensional) support vector regression.



Now, minimizing risk R equals

R C
i

l

i

l

w
w

, ,

*
* || ||ξ ξ ξ ξ= + +á
! == ∑∑1

2
2

114
and the constraints are,

yi – wTxi - b ≤ ε + ξ,    i = 1, l,
wTxi + b - yi ≤ ε + ξ* ,   i = 1, l,                          
ξ   ≥  0                            i = 1, l,
ξ* ≥  0                            i = 1, l,

where ξ and ξ* are slack variables shown in previous figure for
measurements ‘above’ and ‘below’  an ε-tube respectively. Both slack
variables are positive values. Lagrange multipliers (that will be
introduced during the minimization) αi and αi

* corresponding to ξ and ξ*

will be nonzero values for training points ‘above’ and ‘below’ an ε-tube
respectively. Because no training data can be on both sides of the tube,
either αi or αi

* will be nonzero. For data points inside the tube, both
multipliers will be equal to zero.



Similar to procedures applied to SV classifiers, we solve this constrained
optimization problem by forming a primal variables Lagrangian Lp(w, ξ,
ξ*)

A primal variables Lagrangian Lp(wi, b, ξ, ξ*, α, α*, β, β*) has to be
minimized with respect to primal variables w, b, ξ and ξ* and maximized
with respect to nonnegative LaGrange multipliers α, α*, β and β*. This
problem can be solved again either in a primal space or in a dual one.
Below, we consider a solution in a dual space. Applying Karush-Kuhn-
Tucker (KKT) conditions for regression, we will maximize a dual
variables Lagrangian Ld(α, α*)

Ld(α,α*) =

subject to constraints
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0 ≤ αi
*≤ C i = 1, l,

0 ≤ αi ≤ C i = 1, l.

    Note that a dual variables Lagrangian Ld(αααα, αααα*) is expressed in terms of
LaGrange multipliers αααα and αααα* only, and that - the size of the problem,
with respect to the size of an SV classifier design task, is doubled now.
    There are 2l unknown multipliers for linear regression and the Hessian
matrix H of the quadratic optimization problem in the case of regression
is a (2l, 2l) matrix.
    The standard quadratic optimization problem above can be expressed
in a matrix notation and formulated as follows:
Maximize

Ld(α) = -0.5ααααTH αααα + fTαααα,

subject to constraints above where for a linear regression,

H = [xTx + 1], f = [ε - y1 ε - y2, . . ., ε - yN, ε + y1, ε + y2, . . . , ε + y2N].

α αii

l

ii

l* =
= =∑ ∑1 1



   More interesting, common and challenging problem is to aim at
solving the nonlinear regression tasks. Here, similar as in the case of
nonlinear classification, this will be achieved by considering a linear
regression hyperplane in the so-called feature space.
   Thus, we use the same basic idea in designing SV machines for
creating a nonlinear regression function.
    We map input vectors x ∈ ℜℜℜℜ n into vectors z of a higher dimensional
feature space F (z = ΦΦΦΦ(x) where ΦΦΦΦ represents mapping: ℜℜℜℜ n → ℜℜℜℜ f ) and
we solve a linear regression problem in this feature space.
    A mapping ΦΦΦΦ(x) is again chosen in advance. Such an approach again
leads to solving a quadratic optimization problem with inequality
constraints in a z-space. The solution for an regression hyperplane f =
wTz(x) + b which is linear in a feature space F, will create a nonlinear
regressing hypersurface in the original input space. In the case of
nonlinear regression, after calculation of LaGrange multiplier vectors αααα
and αααα*, we can find an optimal desired weight vector of the kernels
expansion as

wo = αααα* - αααα ,



and an optimal bias bo can be found from                                  .

where g = G wo and the matrix G is a corresponding design matrix of
given RBF kernels.

The best nonlinear regression hyperfunction is given by

z = f(x, w) = Gw + b.

     There are a few learning parameters in constructing SV machines for
regression. The two most relevant are the insensitivity zone e and the
penalty parameter C that determines the trade-off between the training
error and VC dimension of the model. Both parameters should be
chosen by the user.
     Generally, an increase in an insensitivity zone e has smoothing effects
on modeling highly noisy polluted data. Increase in e means a reduction
in requirements on the accuracy of approximation. It decreases the
number of SVs leading to data compression too. See the next figures.
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The influence of a insensitivity zone e on modeling quality . A
nonlinear SVM creates a regression function with Gaussian
kernels  and models a highly polluted (25% noise) sinus function
(dashed). 17 measured training data points (plus signs) are used.
     Left:    e = 0.1.    15 SV are chosen (encircled plus signs).
     Right: e = 0.5.      6 chosen SV produced a much better

   regressing function.



Some of the constructive problems:

The SV training works almost perfectly for not too large data basis.

However, when the number of data points is large (say l > 2000) the QP
problem becomes extremely difficult to solve with standard methods. For
example, a training set of 50,000 examples amounts to a Hessian
matrix H with 2.5*109 (2.5 billion) elements. Using an 8-byte
floating-point representation we need 20,000 Megabytes = 20
Gigabytes of memory (Osuna et al, 1997). This cannot be easily fit into
memory of present standard computers.

There are three approaches that resolve the QP for large data sets.
Vapnik in (Vapnik, 1995) proposed the chunking method that is the
decomposition approach. Another decomposition approach is proposed
in (Osuna et all, 1997). The sequential minimal optimization (Platt,
1997) algorithm is of different character and it seems to be an ‘error back
propagation’ for a SVM learning.



There is an alternative approach in the
calculation of the support vectors presented

in the section 5.3.4  under the title:

OPTIMAL SUBSET SELECTION BYOPTIMAL SUBSET SELECTION BY

LINEAR PROGRAMMING (LP)LINEAR PROGRAMMING (LP)



OPTIMAL SUBSET SELECTION BYOPTIMAL SUBSET SELECTION BY

LINEAR PROGRAMMING (LP)LINEAR PROGRAMMING (LP)

At the moment, a lot of work on implementing LP approach in
support vectors selection is starting  (Smola et all 1998, Bennett
1999, Weston et all 1999, and Graepel et all 1999), although the

early work on LP based classification algorithms dates back to the
mid 1960s (see Mangasarian, 1965).

We (Ph.D. student I. Hadzic + me) recently found that an
analysis of  relations between APPROXIMATION and LP
was performed in (Cheney and Goldstein, 1958; Stiefel,

1960 and Rice, 1964).

Independently, we also started with an LP approach.Independently, we also started with an LP approach.
Others are not lagging behind.Others are not lagging behind.



Here we present the LP approach in a regression problem as given in the book.

The detailed description of the LP approach in both the regression and
the classification (pattern recognition) tasks can be found in:

Kecman V., Hadzic I., Support Vectors Selection by Linear
Programming, Proceedings of the International Joint Conference on

Neural Networks (IJCNN 2000), Vol. 5, pp. 193-199, Como, Italy,
2000

The problem is now the following:

Having the measurement pairs (x, y), place the basis function (kernels) G
at each data points and perform approximation same as in SVM

regression.
However, unlike in QP approach one minimizes the L1 norm now!



Thus, we do not want to solve the equation below

y = Gw , w = ?

(which leads to the interpolation). We  rather design a
parsimonious NN containing less neurons than data points.

In other words, we want to solve y = Gw  such that || Gw – y ||  is
small for some chosen norm. We reformulate the initial problem
as follows: Find a weight vector

w = arg ||w||1, subject to, || Gw – y || ∞∞∞∞ ≤ εεεε ,

where εεεε defines the maximally allowed error (that is why we used
L∞ norm) and corresponds to the εεεε - insensitivity zone in SVM.

This constrained optimization problem can be transformed
into a standard linear programming form as follows.



First , ||w||1 =                  is not an LP problem formulation where
we typically minimize cTw, and c is some known coefficient vector.

Thus, we use the standard trick by replacing wp and | wp | as
follows,

wp = w+ - w-

|wp| =  w+ + w-

where w+  and  w- are the two non-negative variables.

Second , the constraint is not in a standard formulation either and
it should also be reformulated as follows. Note that
|| Gw – y ||∞ ≤ ε  above defines an ε-tube inside which should our

approximating function reside.
Such a constraint can be rewritten as,

y - ε 1 ≤ Gw ≤ y + ε 1

where 1 is a (P, 1) column vector filled with ones.

| |wpp

P

=∑ 1



Finally, this problem can be rewritten in a standard LP matrix
notation,

min cTw =
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Despite the lack of a comparative analysis between QP an LP
approaches yet , our first simulational results show that the
LP subset selection may be more than a good alternative to
the QP based algorithms when faced with a huge training

data sets.

Saying that we primarily refer to the following possible
benefits of applying LP based learning:

* LP algorithms are faster and more robust than QP ones,
* they tend to minimize number of weights (meaning SV) 

chosen,
* because of the latter, LP share many good properties with

an established statistical technique known as Basis
Pursuit and finally,

* they naturally incorporate the use of kernels for creation of
nonlinear separation and regression hypersurfaces in
pattern recognition or function approximation.



Let us conclude the presentation of SVMs by summarizing
the basic constructive steps that lead to SV machine:

¾selection of the kernel function that determines the shape of
the decision and regression function in classification and
regression problems respectively,

¾selection of the ‘shape’, i.e., ‘smoothing’ parameter in the
kernel function (for example, polynomial degree and variance
of the Gaussian RBF for polynomials and RBF kernels
respectively),

¾choice of the penalty factor C and selection of the desired
accuracy by defining the insensitivity zone e,

¾solution of the QP (or an LP) problem in l and 2l variables
in the case of classification and regression problems
respectively.



Let us conclude the comparisons between the SVMs and NNs

¾both the NNs and SVMs learn from experimental data,

¾both the NNs and SVMs are universal approximators in the
sense that they can approximate any function to any desired
degree of accuracy,

¾after the learning they are given with the same
mathematical model and they can be presented graphically
with the same so-called NN’s graph,

¾they differ by the learning method used. While NNs
typically use either EBP (or some more sophisticated gradient
descent algorithm) or some other linear algebra based
approach, the SVMs learn by solving the QP or LP problem.


